|
Material Sciences 2024
钕铁硼永磁材料表面防护技术研究进展与展望
|
Abstract:
钕铁硼作为第三代稀土永磁材料由于其优异的磁性能在国防、航空航天、信息通讯、汽车、能源、节能、环保等许多领域广泛应用。这些应用领域对磁体的性能稳定性和耐久性有着极高的要求,但是钕铁硼的抗腐蚀性能限制了其在复杂环境中的应用。文章介绍了钕铁硼的物相组成,总结了钕铁硼的腐蚀环境以及在高温湿热环境下氧化腐蚀、吸氢腐蚀、电化学腐蚀等腐蚀特征。文章进一步总结了钕铁硼表面防护技术最新的研究成果,包括采用合金化提高自身抗腐蚀性能,以及采用表面防护技术隔离腐蚀环境和基体的两种途径,最后对钕铁硼抗腐蚀性能的提升策略提出展望。
As the third-generation rare earth permanent magnet material, Nd-Fe-B is widely used in many fields such as national defense, aerospace, information and communication, automobile, energy, energy saving, environmental protection and so on due to its excellent magnetic properties. These application fields have extremely high requirements for the performance stability and durability of magnets. However, the corrosion resistance of Nd-Fe-B limits its application in complex environments. This paper introduces the phase composition of Nd-Fe-B, summarizes the corrosion environment of Nd-Fe-B and the corrosion characteristics of oxidation corrosion, hydrogen absorption corrosion and electrochemical corrosion in high temperature and humid environment. This paper further summarizes the latest research results of Nd-Fe-B surface protection technology, including the use of alloying method to improve its corrosion resistance and the use of surface protection technology to isolate corrosion environment and matrix. Finally, the strategy of improving the corrosion resistance of Nd-Fe-B in the future is prospected.
[1] | 胡伯平. 稀土永磁材料的现状与发展趋势[J]. 磁性材料及器件, 2014, 45(2): 66-77+80. |
[2] | Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. and Matsuura, Y. (1984) New Material for Permanent Magnets on a Base of Nd and Fe (Invited). Journal of Applied Physics, 55, 2083-2087. https://doi.org/10.1063/1.333572 |
[3] | Song, L., Wang, Y., Lin, W. and Liu, Q. (2008) Primary Investigation of Corrosion Resistance of Ni-P/TiO2 Composite Film on Sintered NdFeB Permanent Magnet. Surface and Coatings Technology, 202, 5146-5150. https://doi.org/10.1016/j.surfcoat.2008.05.025 |
[4] | Song, Y.W., Zhang, H., Yang, H.X. and Song, Z.L. (2008) A Comparative Study on the Corrosion Behavior of NdFeB Magnets in Different Electrolyte Solutions. Materials and Corrosion, 59, 794-801. https://doi.org/10.1002/maco.200804175 |
[5] | Cygan, D.F. and McNallan, M.J. (1995) Corrosion of NdFeB Permanent Magnets in Humid Environments at Temperatures up to 150˚C. Journal of Magnetism and Magnetic Materials, 139, 131-138. https://doi.org/10.1016/0304-8853(95)90037-3 |
[6] | Warren, G.W., Gao, G. and Li, Q. (1991) Corrosion of NdFeB Permanent Magnet Materials. Journal of Applied Physics, 70, 6609-6611. https://doi.org/10.1063/1.349873 |
[7] | 周寿增, 董清飞. 超强永磁体: 稀土铁系永磁材料[M]. 北京: 冶金工业出版社, 2004. |
[8] | Yan, G., McGuiness, P.J., Farr, J.P.G. and Harris, I.R. (2009) Environmental Degradation of NdFeB Magnets. Journal of Alloys and Compounds, 478, 188-192. https://doi.org/10.1016/j.jallcom.2008.11.153 |
[9] | Schultz, L., El-Aziz, A.M., Barkleit, G. and Mummert, K. (1999) Corrosion Behaviour of Nd-Fe-B Permanent Magnetic Alloys. Materials Science and Engineering: A, 267, 307-313. https://doi.org/10.1016/s0921-5093(99)00107-0 |
[10] | Liu, Y.L., Liang, J., He, Y.C., Li, Y.F., Wang, G.F., Ma, Q., et al. (2018) The Effect of CuAl Addition on the Magnetic Property, Thermal Stability and Corrosion Resistance of the Sintered NdFeB Magnets. AIP Advances, 8, Article 056227. https://doi.org/10.1063/1.5008766 |
[11] | Zhang, P., Ma, T., Liang, L. and Yan, M. (2014) Improvement of Corrosion Resistance of Cu and Nb Co-Added Nd-Fe-B Sintered Magnets. Materials Chemistry and Physics, 147, 982-986. https://doi.org/10.1016/j.matchemphys.2014.06.046 |
[12] | Cao, Y., Liu, Y., Zhang, P., Xu, G., Liu, J., Chen, J., et al. (2021) Corrosion Resistance and Mechanical Properties of (Ho, Nd) FeB Magnets. Journal of Rare Earths, 39, 1409-1414. https://doi.org/10.1016/j.jre.2020.08.006 |
[13] | Li, Y., Fan, X., Jia, Z., et al. (2023) The Effect of In-Doping on the Evolution of Microstructure, Magnetic Properties, and Corrosion Resistance of NdFeB Magnet. Chinese Physics B, 33, Article 037508. |
[14] | Luo, C., Qiu, X., Ruan, Y., Lu, Y. and Xing, F. (2020) Effect of Bi Addition on the Corrosion Resistance and Mechanical Properties of Sintered NdFeB Permanent Magnet/Steel Soldered Joints. Materials Science and Engineering: A, 792, Article 139832. https://doi.org/10.1016/j.msea.2020.139832 |
[15] | Zhang, P., Ma, T., Liang, L., Liu, X., Wang, X., Jin, J., et al. (2015) Improved Corrosion Resistance of Low Rare-Earth Nd-Fe-B Sintered Magnets by Nd6Co13Cu Grain Boundary Restructuring. Journal of Magnetism and Magnetic Materials, 379, 186-191. https://doi.org/10.1016/j.jmmm.2014.12.044 |
[16] | Madaah Hosseini, H.R., Dadoo, A., Dolati, A. and Kianvash, A. (2006) A Study on the Corrosion Behavior of the (Nd, Mm)2(Fe, Co, Ni)14B-Type Sintered Magnets. Journal of Alloys and Compounds, 419, 337-341. https://doi.org/10.1016/j.jallcom.2005.10.013 |
[17] | Shimotomai, M., Fukuda, Y., Fujita, A. and Ozaki, Y. (1990) Corrosion-Resistance Nd-TM-B Magnet. IEEE Transactions on Magnetics, 26, 1939-1941. https://doi.org/10.1109/20.104577 |
[18] | Li, J., Yao, Q., Huang, W., Xie, J., Mo, Z., Deng, J., et al. (2022) Improvement in Magnetic Properties, Corrosion Resistance and Microstructure of Nd-Fe-B Sintered Magnets through Intergranular Addition of Tb68Ni32. Journal of Rare Earths, 40, 784-791. https://doi.org/10.1016/j.jre.2021.03.007 |
[19] | Wu, Y., Zhu, M., Shen, P., Fang, Y., Sun, Q., Zhang, L., et al. (2023) A Design of Sintered Nd-Fe-B Magnet Exhibiting Superior Corrosion Resistance Based on the Metallurgical Behavior of Ni and Cr. Journal of Materials Research and Technology, 24, 6369-6377. https://doi.org/10.1016/j.jmrt.2023.04.218 |
[20] | Li, X., Ni, J., Wang, Z., Li, J., Xu, Y., Zhou, S., et al. (2022) Electrochemical Corrosion Behavior of Hot-Deformed NdFeB Magnet with Different Content of Nano-TiC. Journal of Alloys and Compounds, 917, Article 165518. https://doi.org/10.1016/j.jallcom.2022.165518 |
[21] | Liu, Z., Zhang, Q., Zhang, X., Yu, Z., Zhang, X., Mao, Q., et al. (2024) Electrodeposition of Nanocrystalline Ni and Nicr Alloy Coatings: Effects of Cr Content on Microhardness and Wear Resistance Improvement. Journal of Materials Research and Technology, 30, 3584-3593. https://doi.org/10.1016/j.jmrt.2024.04.100 |
[22] | Tsyntsaru, N., Silkin, S., Cesiulis, H., Guerrero, M., Pellicer, E. and Sort, J. (2016) Toward Uniform Electrodeposition of Magnetic Co-W Mesowires Arrays: Direct versus Pulse Current Deposition. Electrochimica Acta, 188, 589-601. https://doi.org/10.1016/j.electacta.2015.12.032 |
[23] | 杨牧南, 罗三根, 邹雅茹, 等. 钕铁硼表面双向脉冲电沉积Ni-Cr合金镀层工艺及耐腐蚀性研究[J]. 江西冶金, 2024, 44(4): 24-256. |
[24] | 洪至强. 钕铁硼直流电沉积Zn-Ni及Ni-Co合金镀层的抗腐蚀性能和力学性能研究[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2023. |
[25] | Ding, X., Xue, L., Wang, X., Ding, K., Cui, S., Sun, Y., et al. (2016) Influence of Bath PH Value on Microstructure and Corrosion Resistance of Phosphate Chemical Conversion Coating on Sintered Nd-Fe-B Permanent Magnets. Journal of Magnetism and Magnetic Materials, 416, 247-255. https://doi.org/10.1016/j.jmmm.2016.04.048 |
[26] | Zhou, Q. and Liu, S. (2021) Fabrication of Magnesium Phosphate Coating by Electrochemical Cathodic Method for Corrosion Protection of Sintered NdFeB Magnets. Journal of Materials Engineering and Performance, 30, 1200-1206. https://doi.org/10.1007/s11665-020-05421-5 |
[27] | Zhou, Q., Jiang, J., Zhong, Q., Wang, Y., Li, K. and Liu, H. (2013) Preparation of Cu-Ni-Fe Alloy Coating and Its Evaluation on Corrosion Behavior in 3.5% NaCl Solution. Journal of Alloys and Compounds, 563, 171-175. https://doi.org/10.1016/j.jallcom.2013.01.136 |
[28] | Wang, Y., Deng, Y., Ma, Y. and Gao, F. (2011) Improving Adhesion of Electroless Ni-P Coating on Sintered NdFeB Magnet. Surface and Coatings Technology, 206, 1203-1210. https://doi.org/10.1016/j.surfcoat.2011.08.027 |
[29] | 袁庆龙, 曹晶晶, 冯旭东, 等. 烧结NdFeB磁体化学镀Ni-P/Ni-Co-P镀层组织结构特征[J]. 稀有金属, 2010, 34(6): 855-859. |
[30] | 王憨鹰, 王兆华, 晋宏营, 等. NdFeB磁性材料化学镀Ni-Cu-P合金耐腐蚀性研究[J]. 腐蚀科学与防护技术, 2017, 29(5): 527-532. |
[31] | Yang, D., Lin, X.X., Chen, H.M., Gao, Y.H., Lv, Q. and Wang, Y.Q. (2012) Investigation on Properties of Electroless Ni-P-W/Al2O3 Composite Coatings Deposited on Sintered NdFeB Permanent Magnet. Advanced Materials Research, 476, 397-401. https://doi.org/10.4028/www.scientific.net/amr.476-478.397 |
[32] | 李孝坤, 闫凯, 刘忻. 工艺参数对钕铁硼化学镀Ni-Mo-P/PTFE复合镀层耐蚀性的影响[J]. 电镀与精饰, 2022, 44(3): 35-39. |
[33] | Wang, Y., Sun, Z., Hu, H., Jing, S., Zhao, B., Xu, W., et al. (2006) Raman Scattering Study of Molecules Adsorbed on ZnS Nanocrystals. Journal of Raman Spectroscopy, 38, 34-38. https://doi.org/10.1002/jrs.1570 |
[34] | Tamborim Takeuchi, S.M., Azambuja, D.S., Saliba-Silva, A.M. and Costa, I. (2006) Corrosion Protection of NdFeB Magnets by Phosphating with Tungstate Incorporation. Surface and Coatings Technology, 200, 6826-6831. https://doi.org/10.1016/j.surfcoat.2005.10.029 |
[35] | Yasakau, K.A., Zheludkevich, M.L., Lamaka, S.V. and Ferreira, M.G.S. (2006) Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds. The Journal of Physical Chemistry B, 110, 5515-5528. https://doi.org/10.1021/jp0560664 |
[36] | Yin, Y., Zhao, H., Prabhakar, M. and Rohwerder, M. (2022) Organic Composite Coatings Containing Mesoporous Silica Particles: Degradation of the SIO2 Leading to Self-Healing of the Delaminated Interface. Corrosion Science, 200, Article 110252. https://doi.org/10.1016/j.corsci.2022.110252 |
[37] | Duan, L., Chen, J., Zhang, P., Xu, G., Lv, J., Wang, D., et al. (2023) Organic-Inorganic Composite Passivation and Corrosion Resistance of Zinc Coated NdFeB Magnets. Journal of Alloys and Compounds, 936, Article 168292. https://doi.org/10.1016/j.jallcom.2022.168292 |
[38] | Zhang, P., Liu, Q., Huang, J., Cui, J., Sun, W., Li, B., et al. (2022) Phosphate Conversion of Electroplated Ni Coatings on NdFeB Magnets Improving the Anticorrosion Property. Journal of Alloys and Compounds, 922, Article 166206. https://doi.org/10.1016/j.jallcom.2022.166206 |
[39] | Chen, J., Yang, H., Xu, G., Zhang, P., Lv, J., Sun, W., et al. (2022) Rare Earth Passivation and Corrosion Resistance of Zinc Coated NdFeB Magnets. Journal of Rare Earths, 40, 302-308. https://doi.org/10.1016/j.jre.2020.11.012 |
[40] | Zhang, M., Zhao, X., Jia, H., Xing, H., Zhang, H., Wang, X., et al. (2022) Anticorrosion Properties of Modified Basalt Powder/Epoxy Resin Coating. Journal of Coatings Technology and Research, 19, 1409-1420. https://doi.org/10.1007/s11998-022-00615-z |
[41] | Fu, W., Shi, S., Ge, J., et al. (2020) Research Progress in Epoxy Resin Coated Anticorrosive Filler. Modern Chemical Industry, 40, 56-57. |
[42] | Yang, K., Wu, Z., Zhou, C., Cai, S., Wu, Z., Tian, W., et al. (2022) Comparison of Toughening Mechanisms in Natural Silk-Reinforced Composites with Three Epoxy Resin Matrices. Composites Part A: Applied Science and Manufacturing, 154, Article 106760. https://doi.org/10.1016/j.compositesa.2021.106760 |
[43] | Liu, J., Jiang, L., Yang, Z., Wang, L., Gao, Z., Shen, Q., et al. (2023) Fabrication of Epoxy Composite Coatings with Micro-Nano Structure for Corrosion Resistance of Sintered NdFeB. Coatings, 13, Article 1897. https://doi.org/10.3390/coatings13111897 |
[44] | Yang, Y., Sun, Y., Yang, L., Su, L., Jia, M., Chen, Y., et al. (2023) Preparation and Anticorrosion Performance of Double-Layer Epoxy Resin Coatings on Bonded NdFeB Magnets. Journal of Materials Engineering and Performance, 2023, 1-11. https://doi.org/10.1007/s11665-023-09019-5 |
[45] | Liang, Y., Jiang, L., Ju, W., Xu, S., Tao, Z., Wang, K., et al. (2024) Modification of Bis-Silane Film with Cerium Salt for Improved Corrosion Protection of Sintered NdFeB. Materials Today Communications, 38, Article 108319. https://doi.org/10.1016/j.mtcomm.2024.108319 |
[46] | Vega, J., Scheerer, H., Andersohn, G. and Oechsner, M. (2018) Experimental Studies of the Effect of Ti Interlayers on the Corrosion Resistance of Tin PVD Coatings by Using Electrochemical Methods. Corrosion Science, 133, 240-250. https://doi.org/10.1016/j.corsci.2018.01.010 |
[47] | Davies, J.L., Glover, C.F., Van de Langkruis, J., Zoestbergen, E. and Williams, G. (2015) The Effect of Mg Concentration on the Resistance of PVD Zn-Mg Coatings to Corrosion Driven Organic Coating Delamination. Corrosion Science, 100, 607-618. https://doi.org/10.1016/j.corsci.2015.08.036 |
[48] | Li, J., Wang, Y. and Wang, L. (2014) Structure and Protective Effect of Aln/Al Multilayered Coatings on NdFeB by Magnetron Sputtering. Thin Solid Films, 568, 87-93. https://doi.org/10.1016/j.tsf.2014.08.012 |
[49] | Tang, J., Huang, W. and Li, D. (2024) Improvements in Properties of NdFeB Magnets Obtained via Magnetron Sputtering and Thermal Diffusion. Journal of Rare Earths, 42, 1710-1716. https://doi.org/10.1016/j.jre.2023.09.002 |
[50] | Xie, Y., Wang, P., Deng, W., Duan, Y., Chen, Y. and Huang, Y. (2020) Corrosion Resistance of Tin/Al2O3 Multilayer Films Deposited on NdFeB Surface by Magnetron Sputtering. Journal of New Materials for Electrochemical Systems, 23, 20-24. https://doi.org/10.14447/jnmes.v23i1.a04 |
[51] | Zhang, P., Liu, J., Xu, G., Yi, X., Chen, J. and Wu, Y. (2015) Anticorrosive Property of Al Coatings on Sintered NdFeB Substrates via Plasma Assisted Physical Vapor Deposition Method. Surface and Coatings Technology, 282, 86-93. https://doi.org/10.1016/j.surfcoat.2015.10.021 |
[52] | Huang, J., Liu, Q., Yang, Z., Xu, G., Zhang, P., Lv, J., et al. (2021) Densification and Anticorrosion Performances of Vacuum Evaporated Aluminium Coatings on NdFeB Magnets. Journal of Rare Earths, 39, 1238-1245. https://doi.org/10.1016/j.jre.2020.11.014 |
[53] | Chen, J., Yang, H., Xu, G., Zhang, P., Lv, J., Sun, W., et al. (2020) Phosphating Passivation of Vacuum Evaporated Al/NdFeB Magnets Boosting High Anti-Corrosion Performances. Surface and Coatings Technology, 399, Article 126115. https://doi.org/10.1016/j.surfcoat.2020.126115 |
[54] | 胡芳, 许伟, 代明江, 等. 钕铁硼永磁材料物理气相沉积技术及相关工艺的研究进展[J]. 材料导报, 2014, 28(5): 20-23. |
[55] | Cao, Y., Zhang, P., Sun, W., Zhang, W., Wei, H., Wang, J., et al. (2021) Effects of Bias Voltage on Coating Structures and Anticorrosion Performances of PA-PVD Al Coated NdFeB Magnets. Journal of Rare Earths, 39, 703-711. https://doi.org/10.1016/j.jre.2020.07.025 |