全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MARCH2多克隆抗体的制备与鉴定及其在组织和细胞系中的表达与亚细胞结构中的定位
Preparation and Identification of MARCH2 Polyclonal Antibodies and Their Expression and Subcellular Structural Localization in Tissues and Cell Lines

DOI: 10.12677/acm.2024.14102801, PP. 1299-1309

Keywords: MARCH2,多克隆抗体,免疫组织化学,亚细胞结构定位,组织芯片
MARCH2
, Polyclonal Antibody, Immunohistochemistry, Subcellular Structural Localization, Tissue Chip

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨MARCH2多克隆抗体的制备、鉴定与纯化的方法以及其在组织和细胞系中的表达情况、在亚细胞结构中的定位情况。方法:利用DNAstar软件对MARCH2蛋白的抗原性等进行分析,化学合成MARCH2短肽,制备成完全抗原免疫家兔,获取血清,纯化,用Western blot、Elisa、免疫荧光进行鉴定。用RT-PCR检测MARCH2在细胞系中的表达情况,用Western blot检测MARCH2在组织中的表达情况。用免疫荧光法及激光共聚焦显微镜分析检测MARCH2在亚细胞结构中的定位。结果:成功制备完全抗原免疫家兔,纯化出多克隆抗体,用Western blot、Elisa、免疫荧光法证实多克隆抗体制备成功。利用半定量RT-PCR方法,在32种细胞系中检测了MARCH2 mRNA的表达水平,结果显示,MARCH2呈广泛表达,在HeLa、U2OS、HCT116、COS7细胞中表达最高,在SKBR3、HGC-27、MGC-803细胞中低表达。利用组织芯片及免疫组织化学方法进一步分析了其在正常组织及肿瘤组织中的表达情况,染色结果显示,MARCH2呈广泛表达,在前列腺、肝组织中呈高表达,在横纹肌、甲状腺组织中呈低表达,主要在胞浆中呈现弥漫均匀细颗粒状分布。此外,MARCH2表达因肿瘤类型的不同有差异。与对应的正常组织相比,MARCH2在某些肿瘤(如前列腺癌、肝癌)组织中表达降低,而在某些肿瘤(如食管癌、结肠癌)组织中表达增高。用免疫荧光法及激光共聚焦显微镜分析检测MARCH2在亚细胞结构中的定位,发现MARCH2与内质网、高尔基体共定位,与溶酶体、内体部分共定位,与线粒体没有共定位。结论:成功获得了MARCH2多克隆抗体,为进一步研究MARCH2蛋白的功能奠定了基础。MARCH2在不同类型肿瘤中的差异表达及其在亚细胞结构中的定位高度提示MARCH2在肿瘤发生发展中具有重要的潜在应用价值。
Aims: To explore the preparation, identification, and purification methods of MARCH2 polyclonal antibodies, as well as their expression and subcellular structural localization in tissues and cell lines. Methods: DNAstar software was used to analyze the antigenicity of MARCH2 protein, and MARCH2 short peptides were chemically synthesized to prepare complete antigen-immunized rabbits. Serum was obtained, purified, and identified by Western blot, Elisa, and immunofluorescence. RT-PCR was used to detect the expression of MARCH2 in cell lines, and Western blot was used to detect the expression of MARCH2 in tissues. Immunofluorescence and confocal laser microscopy were used to analyze and detect the localization of MARCH2 in subcellular structures. Results: Fully antigen-immunized rabbits were successfully prepared, and polyclonal antibodies were purified. Western blot, Elisa, and immunofluorescence were used to confirm the successful preparation of polyclonal antibodies. Using semi-quantitative RT-PCR method, the expression level of MARCH2 mRNA was detected in 32 cell lines. The results showed that MARCH2 was widely expressed, with the highest expression in HeLa, U2OS, HCT116, and COS7 cells, and low expression in SKBR3, HGC-27, and MGC-803 cells. The expression of MARCH2 in normal and tumor tissues was further analyzed using tissue chips and immunohistochemical methods. The staining results showed that MARCH2 was widely expressed, with high expression in prostate and liver tissues, low expression in striated muscle and thyroid tissues, and mainly distributed in a

References

[1]  Bartee, E., Mansouri, M., Hovey Nerenberg, B.T., Gouveia, K. and Früh, K. (2004) Downregulation of Major Histocompatibility Complex Class I by Human Ubiquitin Ligases Related to Viral Immune Evasion Proteins. Journal of Virology, 78, 1109-1120.
https://doi.org/10.1128/jvi.78.3.1109-1120.2004
[2]  Luo, Q., Liu, Q., Cheng, H., Wang, J., Zhao, T., Zhang, J., et al. (2022) Nondegradable Ubiquitinated ATG9A Organizes Golgi Integrity and Dynamics Upon Stresses. Cell Reports, 40, Article ID: 111195.
https://doi.org/10.1016/j.celrep.2022.111195
[3]  Umthong, S., Timilsina, U., D’Angelo, M. and Stavrou, S. (2023) Determining the Antiviral Mechanism of MARCH2. bioRxiv.
https://doi.org/10.1101/2023.09.18.558306
[4]  Yu, S., Li, Y., Liao, Z., Wang, Z., Wang, Z., Li, Y., et al. (2019) Plasma Extracellular Vesicle Long RNA Profiling Identifies a Diagnostic Signature for the Detection of Pancreatic Ductal Adenocarcinoma. Gut, 69, 540-550.
https://doi.org/10.1136/gutjnl-2019-318860
[5]  Baker, R.K., Haendel, M.A., Swanson, B.J., Shambaugh, J.C., Micales, B.K. and Lyons, G.E. (1997) In Vitro Preselection of Gene-Trapped Embryonic Stem Cell Clones for Characterizing Novel Developmentally Regulated Genes in the Mouse. Developmental Biology, 185, 201-214.
https://doi.org/10.1006/dbio.1997.8541
[6]  Metcalfe, S.M., Muthukumarana, P.A.D.S., Thompson, H.L., Haendel, M.A. and Lyons, G.E. (2004) Leukaemia Inhibitory Factor (LIF) Is Functionally Linked to Axotrophin and Both LIF and Axotrophin Are Linked to Regulatory Immune Tolerance. FEBS Letters, 579, 609-614.
https://doi.org/10.1016/j.febslet.2004.12.027
[7]  Muthukumarana, P.A.D.S., Lyons, G.E., Miura, Y., Thompson, L.H., Watson, T., Green, C.J., et al. (2006) Evidence for Functional Inter-Relationships between FOXP3, Leukaemia Inhibitory Factor, and Axotrophin/March-7 in Transplantation Tolerance. International Immunopharmacology, 6, 1993-2001.
https://doi.org/10.1016/j.intimp.2006.09.015
[8]  Nathan, J.A., Sengupta, S., Wood, S.A., Admon, A., Markson, G., Sanderson, C., et al. (2008) The Ubiquitin E3 Ligase MARCH7 Is Differentially Regulated by the Deubiquitylating Enzymes USP7 and USP9X. Traffic, 9, 1130-1145.
https://doi.org/10.1111/j.1600-0854.2008.00747.x
[9]  Iyengar, P.V., Hirota, T., Hirose, S. and Nakamura, N. (2011) Membrane-Associated RING-CH 10 (MARCH10 Protein) Is a Microtubule-Associated E3 Ubiquitin Ligase of the Spermatid Flagella. Journal of Biological Chemistry, 286, 39082-39090.
https://doi.org/10.1074/jbc.m111.256875
[10]  Morokuma, Y., Nakamura, N., Kato, A., Notoya, M., Yamamoto, Y., Sakai, Y., et al. (2007) MARCH-XI, a Novel Transmembrane Ubiquitin Ligase Implicated in Ubiquitin-Dependent Protein Sorting in Developing Spermatids. Journal of Biological Chemistry, 282, 24806-24815.
https://doi.org/10.1074/jbc.m700414200
[11]  Du, J., Xiao, H., Hu, Y. and Li, Z. (2023) March2 Negatively Regulates Antiviral Immune Response by Targeting Tbk1 in Grass Carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 140, Article ID: 108965.
https://doi.org/10.1016/j.fsi.2023.108965
[12]  Zeng, L., Feng, L., Liu, R., Lin, H., Shu, H. and Li, S. (2022) The Membrane-Associated Ubiquitin Ligases MARCH2 and MARCH3 Target IL-5 Receptor Alpha to Negatively Regulate Eosinophilic Airway Inflammation. Cellular & Molecular Immunology, 19, 1117-1129.
https://doi.org/10.1038/s41423-022-00907-9
[13]  Yoo, W., Cho, E., Kim, S. and Yoon, J. (2019) The E3 Ubiquitin Ligase MARCH2 Regulates ERGIC3-Dependent Trafficking of Secretory Proteins. Journal of Biological Chemistry, 294, 10900-10912.
https://doi.org/10.1074/jbc.ra119.007435
[14]  Chathuranga, K., Kim, T., Lee, H., Park, J., Kim, J., Chathuranga, W.A.G., et al. (2020) Negative Regulation of NEMO Signaling by the Ubiquitin E3 Ligase March2. The EMBO Journal, 39, e105139.
https://doi.org/10.15252/embj.2020105139
[15]  Sandow, J.J., Webb, A.I., Stockwell, D., Kershaw, N.J., Tan, C., Ishido, S., et al. (2021) Proteomic Analyses Reveal That Immune Integrins Are Major Targets for Regulation by Membrane‐Associated Ring‐CH (MARCH) Proteins MARCH2, 3, 4 and 9. Proteomics, 21, Article ID: 2000244.
https://doi.org/10.1002/pmic.202000244
[16]  Liu, S., Bi, Y., Han, T., Li, Y.E., Wang, Q., Wu, N.N., et al. (2024) The E3 Ubiquitin Ligase MARCH2 Protects against Myocardial Ischemia-Reperfusion Injury through Inhibiting Pyroptosis via Negative Regulation of PGAM5/MAVS/NLRP3 Axis. Cell Discovery, 10, Article No. 24.
https://doi.org/10.1038/s41421-023-00622-3
[17]  Babon, J.J., Stockwell, D., DiRago, L., Zhang, J., Laktyushin, A., Villadangos, J., et al. (2019) Membrane-Associated RING-CH (MARCH) Proteins Down-Regulate Cell Surface Expression of the Interleukin-6 Receptor α Chain (IL6Rα). Biochemical Journal, 476, 2869-2882.
https://doi.org/10.1042/bcj20190577
[18]  Zhang, Y., Tada, T., Ozono, S., Yao, W., Tanaka, M., Yamaoka, S., et al. (2019) Membrane-associated RING-CH (MARCH) 1 and 2 Are MARCH Family Members That Inhibit HIV-1 Infection. Journal of Biological Chemistry, 294, 3397-3405.
https://doi.org/10.1074/jbc.ac118.005907
[19]  Seo, T., Lowery, A.M., Xu, H., et al. (2023) MARCH Family E3 Ubiquitin Ligases Selectively Target and Degrade Cadherin Family Proteins. bioRxiv.
https://doi.org/10.1101/2023.08.10.552739
[20]  Yu, C., Bai, Y., Tan, W., Bai, Y., Li, X., Zhou, Y., et al. (2024) Human MARCH1, 2, and 8 Block Ebola Virus Envelope Glycoprotein Cleavage via Targeting Furin P Domain. Journal of Medical Virology, 96, e29445.
https://doi.org/10.1002/jmv.29445

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133