|
肠道炎症状态下骨代谢调节的稳态与失衡
|
Abstract:
肠道炎症性疾患(Inflammatory Bowel Disease)是一种慢性全身性炎症疾病,主要包括溃疡性结肠炎(Ulcerative Colitis, UC)以及克罗恩病(Crohn’s Disease, CD)特征是肠道黏膜受到广泛的炎症破坏。此外,其可涉及全身各个系统,形成系统性合并症,骨骼系统便是其中之一。肠道炎症患者或各式各样的动物模型中均可观察到骨质破坏以及骨量丧失的现象,而这其中的病因机制却涉及各个方面,包括营养状况、炎症因子、肠道激素类信号分子以及肠道菌群等。总的来说骨代谢的平衡主要依赖于成骨与破骨作用之间的平衡,外界或内部因素倘若打破这一平衡,便会引起宏观方面的骨骼系统的变化,肠道炎症状态下亦是如此。本文将从肠道炎症状态出发,对这一病理环境下骨代谢异常的表现以及病因机制以及相关治疗策略做一综述。
Inflammatory Bowel Disease, as a chronic systemic inflammatory disease that includes Ulcerative Colitis (UC) and Crohn’s disease (CD), is characterized by extensive inflammatory destruction of the intestinal mucosa. In addition, it involves various systems throughout the body, leading to systemic comorbidities, especially the skeletal system. Bone destruction and bone loss have been observed in patients with intestinal inflammation or in various animal models, and the etiological mechanism of this phenomenon involves various aspects, including nutritional status, inflammatory factors, intestinal hormone signaling molecules, and intestinal flora. In general, the balance of bone metabolism mainly depends on the balance between osteogenesis and osteoclastogenesis. If external or internal factors break this balance, it would cause changes in the skeletal system in the macro aspect, and this is also the case in the state of intestinal inflammation. Starting from the state of intestinal inflammation, this article will review the manifestations, etiological mechanisms and related treatment strategies of abnormal bone metabolism in this pathological environment.
[1] | Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. https://doi.org/10.1038/nrgastro.2015.150 |
[2] | Ott, C. and Schölmerich, J. (2013) Extraintestinal Manifestations and Complications in IBD. Nature Reviews Gastroenterology & Hepatology, 10, 585-595. https://doi.org/10.1038/nrgastro.2013.117 |
[3] | Sigurdsson, G.V., Schmidt, S., Mellström, D., Ohlsson, C., Saalman, R. and Lorentzon, M. (2022) Young Adult Male Patients with Childhood-Onset IBD Have Increased Risks of Compromised Cortical and Trabecular Bone Microstructures. Inflammatory Bowel Diseases, 29, 1065-1072. https://doi.org/10.1093/ibd/izac181 |
[4] | Oostlander, A.E., Bravenboer, N., Sohl, E., Holzmann, P.J., van der Woude, C.J., Dijkstra, G., et al. (2011) Histomorphometric Analysis Reveals Reduced Bone Mass and Bone Formation in Patients with Quiescent Crohn’s Disease. Gastroenterology, 140, 116-123. https://doi.org/10.1053/j.gastro.2010.09.007 |
[5] | Argollo, M., Gilardi, D., Peyrin-Biroulet, C., Chabot, J., Peyrin-Biroulet, L. and Danese, S. (2019) Comorbidities in Inflammatory Bowel Disease: A Call for Action. The Lancet Gastroenterology & Hepatology, 4, 643-654. https://doi.org/10.1016/s2468-1253(19)30173-6 |
[6] | Peek, C.T., Ford, C.A., Eichelberger, K.R., Jacobse, J., Torres, T.P., Maseda, D., et al. (2022) Intestinal Inflammation Promotes MDL-1+ Osteoclast Precursor Expansion to Trigger Osteoclastogenesis and Bone Loss. Cellular and Molecular Gastroenterology and Hepatology, 14, 731-750. https://doi.org/10.1016/j.jcmgh.2022.07.002 |
[7] | Massironi, S., Viganò, C., Palermo, A., Pirola, L., Mulinacci, G., Allocca, M., et al. (2023) Inflammation and Malnutrition in Inflammatory Bowel Disease. The Lancet Gastroenterology & Hepatology, 8, 579-590. https://doi.org/10.1016/s2468-1253(23)00011-0 |
[8] | Bruscoli, S., Febo, M., Riccardi, C. and Migliorati, G. (2021) Glucocorticoid Therapy in Inflammatory Bowel Disease: Mechanisms and Clinical Practice. Frontiers in Immunology, 12, Article ID: 691480. https://doi.org/10.3389/fimmu.2021.691480 |
[9] | Zhao, Y., Peng, X., Wang, Q., Zhang, Z., Wang, L., Xu, Y., et al. (2023) Crosstalk between the Neuroendocrine System and Bone Homeostasis. Endocrine Reviews, 45, 95-124. https://doi.org/10.1210/endrev/bnad025 |
[10] | Bolamperti, S., Villa, I. and Rubinacci, A. (2022) Bone Remodeling: An Operational Process Ensuring Survival and Bone Mechanical Competence. Bone Research, 10, Article No. 48. https://doi.org/10.1038/s41413-022-00219-8 |
[11] | Ponzetti, M. and Rucci, N. (2021) Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. International Journal of Molecular Sciences, 22, Article No. 6651. https://doi.org/10.3390/ijms22136651 |
[12] | Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504 |
[13] | Hegarty, L.M., Jones, G. and Bain, C.C. (2023) Macrophages in Intestinal Homeostasis and Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 20, 538-553. https://doi.org/10.1038/s41575-023-00769-0 |
[14] | Peterson, L.W. and Artis, D. (2014) Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nature Reviews Immunology, 14, 141-153. https://doi.org/10.1038/nri3608 |
[15] | Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850. https://doi.org/10.1038/s41385-019-0160-6 |
[16] | Merlotti, D., Mingiano, C., Valenti, R., Cavati, G., Calabrese, M., Pirrotta, F., et al. (2022) Bone Fragility in Gastrointestinal Disorders. International Journal of Molecular Sciences, 23, Article No. 2713. https://doi.org/10.3390/ijms23052713 |
[17] | Tilg, H., Moschen, A.R., Kaser, A., Pines, A. and Dotan, I. (2008) Gut, Inflammation and Osteoporosis: Basic and Clinical Concepts. Gut, 57, 684-694. https://doi.org/10.1136/gut.2006.117382 |
[18] | Ünal, N.G., Oruç, N., Tomey, O. and Ömer Özütemiz, A. (2021) Malnutrition and Sarcopenia Are Prevalent among Inflammatory Bowel Disease Patients with Clinical Remission. European Journal of Gastroenterology & Hepatology, 33, 1367-1375. https://doi.org/10.1097/meg.0000000000002044 |
[19] | Gold, S.L., Rabinowitz, L.G., Manning, L., Keefer, L., Rivera-Carrero, W., Stanley, S., et al. (2022) High Prevalence of Malnutrition and Micronutrient Deficiencies in Patients with Inflammatory Bowel Disease Early in Disease Course. Inflammatory Bowel Diseases, 29, 423-429. https://doi.org/10.1093/ibd/izac102 |
[20] | Balestrieri, P., Ribolsi, M., Guarino, M.P.L., Emerenziani, S., Altomare, A. and Cicala, M. (2020) Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients, 12, Article No. 372. https://doi.org/10.3390/nu12020372 |
[21] | Yakut, M., Üstün, Y., Kabaçam, G. and Soykan, I. (2010) Serum Vitamin B12 and Folate Status in Patients with Inflammatory Bowel Diseases. European Journal of Internal Medicine, 21, 320-323. https://doi.org/10.1016/j.ejim.2010.05.007 |
[22] | Burrelli Scotti, G., Afferri, M.T., De Carolis, A., Vaiarello, V., Fassino, V., Ferrone, F., et al. (2019) Factors Affecting Vitamin D Deficiency in Active Inflammatory Bowel Diseases. Digestive and Liver Disease, 51, 657-662. https://doi.org/10.1016/j.dld.2018.11.036 |
[23] | Massironi, S., Rossi, R.E., Cavalcoli, F.A., Della Valle, S., Fraquelli, M. and Conte, D. (2013) Nutritional Deficiencies in Inflammatory Bowel Disease: Therapeutic Approaches. Clinical Nutrition, 32, 904-910. https://doi.org/10.1016/j.clnu.2013.03.020 |
[24] | Winzenberg, T., Shaw, K., Fryer, J. and Jones, G. (2006) Effects of Calcium Supplementation on Bone Density in Healthy Children: Meta-Analysis of Randomised Controlled Trials. BMJ, 333, Article No. 775. https://doi.org/10.1136/bmj.38950.561400.55 |
[25] | Lloyd, T. (1993) Calcium Supplementation and Bone Mineral Density in Adolescent Girls. JAMA: The Journal of the American Medical Association, 270, 841-844. https://doi.org/10.1001/jama.270.7.841 |
[26] | Winzenberg, T.M., Shaw, K., Fryer, J. and Jones, G. (2006) Calcium Supplementation for Improving Bone Mineral Density in Children. Cochrane Database of Systematic Reviews, No. 2, CD005119. |
[27] | Chevalley, T., Rizzoli, R., Hans, D., Ferrari, S. and Bonjour, J. (2005) Interaction between Calcium Intake and Menarcheal Age on Bone Mass Gain: An Eight-Year Follow-Up Study from Prepuberty to Postmenarche. The Journal of Clinical Endocrinology & Metabolism, 90, 44-51. https://doi.org/10.1210/jc.2004-1043 |
[28] | Arnold, A., Dennison, E., Kovacs, C.S., Mannstadt, M., Rizzoli, R., Brandi, M.L., et al. (2021) Hormonal Regulation of Biomineralization. Nature Reviews Endocrinology, 17, 261-275. https://doi.org/10.1038/s41574-021-00477-2 |
[29] | Orchard, T.S., Larson, J.C., Alghothani, N., Bout-Tabaku, S., Cauley, J.A., Chen, Z., et al. (2014) Magnesium Intake, Bone Mineral Density, and Fractures: Results from the Women’s Health Initiative Observational Study. The American Journal of Clinical Nutrition, 99, 926-933. https://doi.org/10.3945/ajcn.113.067488 |
[30] | Rizzoli, R., Biver, E. and Brennan-Speranza, T.C. (2021) Nutritional Intake and Bone Health. The Lancet Diabetes & Endocrinology, 9, 606-621. https://doi.org/10.1016/s2213-8587(21)00119-4 |
[31] | Ebeling, P.R., Adler, R.A., Jones, G., Liberman, U.A., Mazziotti, G., Minisola, S., et al. (2018) Management of Endocrine Disease: Therapeutics of Vitamin D. European Journal of Endocrinology, 179, R239-R259. https://doi.org/10.1530/eje-18-0151 |
[32] | Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J., et al. (2019) Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-Analysis. JAMA Network Open, 2, e1917789. https://doi.org/10.1001/jamanetworkopen.2019.17789 |
[33] | Wang, J., Zhu, Q., Cao, D., Peng, Q., Zhang, X., Li, C., et al. (2022) Bone Marrow-Derived IGF-1 Orchestrates Maintenance and Regeneration of the Adult Skeleton. Proceedings of the National Academy of Sciences, 120, e2203779120. https://doi.org/10.1073/pnas.2203779120 |
[34] | Leppkes, M. and Neurath, M.F. (2020) Cytokines in Inflammatory Bowel Diseases—Update 2020. Pharmacological Research, 158, Article ID: 104835. https://doi.org/10.1016/j.phrs.2020.104835 |
[35] | Hügle, B., Speth, F. and Haas, J. (2017) Inflammatory Bowel Disease Following Anti-Interleukin-1-Treatment in Systemic Juvenile Idiopathic Arthritis. Pediatric Rheumatology, 15, Article No. 16. https://doi.org/10.1186/s12969-017-0147-3 |
[36] | Wirtz, S., Popp, V., Kindermann, M., Gerlach, K., Weigmann, B., Fichtner-Feigl, S., et al. (2017) Chemically Induced Mouse Models of Acute and Chronic Intestinal Inflammation. Nature Protocols, 12, 1295-1309. https://doi.org/10.1038/nprot.2017.044 |
[37] | Guo, J., Wang, F., Hu, Y., Luo, Y., Wei, Y., Xu, K., et al. (2023) Exosome-Based Bone-Targeting Drug Delivery Alleviates Impaired Osteoblastic Bone Formation and Bone Loss in Inflammatory Bowel Diseases. Cell Reports Medicine, 4, Article ID: 100881. https://doi.org/10.1016/j.xcrm.2022.100881 |
[38] | Dresner-Pollak, R., Gelb, N., Rachmilewitz, D., Karmeli, F. and Weinreb, M. (2004) Interleukin 10-Deficient Mice Develop Osteopenia, Decreased Bone Formation, and Mechanical Fragility of Long Bones. Gastroenterology, 127, 792-801. https://doi.org/10.1053/j.gastro.2004.06.013 |
[39] | Al Saedi, A., Sharma, S., Bani Hassan, E., Chen, L., Ghasem-Zadeh, A., Hassanzadeganroudsari, M., et al. (2021) Characterization of Skeletal Phenotype and Associated Mechanisms with Chronic Intestinal Inflammation in the Winnie Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 28, 259-272. https://doi.org/10.1093/ibd/izab174 |
[40] | Metzger, C.E., Narayanan, S.A., Elizondo, J.P., Carter, A.M., Zawieja, D.C., Hogan, H.A., et al. (2019) DSS-Induced Colitis Produces Inflammation-Induced Bone Loss While Irisin Treatment Mitigates the Inflammatory State in Both Gut and Bone. Scientific Reports, 9, Article No. 15144. https://doi.org/10.1038/s41598-019-51550-w |
[41] | Stanisławowski, M., Wiśniewski, P., Guzek, M., Wierzbicki, P.M., Adrych, K., Smoczyński, M., et al. (2014) Influence of Receptor Activator of Nuclear Factor Kappa B Ligand, Osteoprotegerin and Interleukin-33 on Bone Metabolism in Patients with Long-Standing Ulcerative Colitis. Journal of Crohn’s and Colitis, 8, 802-810. https://doi.org/10.1016/j.crohns.2013.12.021 |
[42] | Spohn, S.N. and Mawe, G.M. (2017) Non-Conventional Features of Peripheral Serotonin Signalling—The Gut and Beyond. Nature Reviews Gastroenterology & Hepatology, 14, 412-420. https://doi.org/10.1038/nrgastro.2017.51 |
[43] | Yadav, V.K., Oury, F., Suda, N., Liu, Z., Gao, X., Confavreux, C., et al. (2009) A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 138, 976-989. https://doi.org/10.1016/j.cell.2009.06.051 |
[44] | Gong, Y., Slee, R.B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A.M., et al. (2001) LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development. Cell, 107, 513-523. https://doi.org/10.1016/s0092-8674(01)00571-2 |
[45] | Yadav, V.K., Ryu, J., Suda, N., Tanaka, K.F., Gingrich, J.A., Schütz, G., et al. (2008) Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell, 135, 825-837. https://doi.org/10.1016/j.cell.2008.09.059 |
[46] | Erspamer, V. and Asero, B. (1952) Identification of Enteramine, the Specific Hormone of the Enterochromaffin Cell System, as 5-Hydroxytryptamine. Nature, 169, 800-801. https://doi.org/10.1038/169800b0 |
[47] | Kode, A., Mosialou, I., Silva, B.C., Rached, M., Zhou, B., Wang, J., et al. (2012) FOXO1 Orchestrates the Bone-Suppressing Function of Gut-Derived Serotonin. Journal of Clinical Investigation, 122, 3490-3503. https://doi.org/10.1172/jci64906 |
[48] | Lavoie, B., Roberts, J.A., Haag, M.M., Spohn, S.N., Margolis, K.G., Sharkey, K.A., et al. (2019) Gut-Derived Serotonin Contributes to Bone Deficits in Colitis. Pharmacological Research, 140, 75-84. https://doi.org/10.1016/j.phrs.2018.07.018 |
[49] | Chen, Z., Luo, J., Li, J., Kim, G., Stewart, A., Urban, J.F., et al. (2021) Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity, 54, 151-163.e6. https://doi.org/10.1016/j.immuni.2020.10.014 |
[50] | Chabbi-Achengli, Y., Coudert, A.E., Callebert, J., Geoffroy, V., Côté, F., Collet, C., et al. (2012) Decreased Osteoclastogenesis in Serotonin-Deficient Mice. Proceedings of the National Academy of Sciences, 109, 2567-2572. https://doi.org/10.1073/pnas.1117792109 |
[51] | Grüner, N., Ortlepp, A.L. and Mattner, J. (2023) Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-bone Physiology. International Journal of Molecular Sciences, 24, Article No. 5161. https://doi.org/10.3390/ijms24065161 |
[52] | Sternes, P.R., Brett, L., Phipps, J., Ciccia, F., Kenna, T., de Guzman, E., et al. (2022) Distinctive Gut Microbiomes of Ankylosing Spondylitis and Inflammatory Bowel Disease Patients Suggest Differing Roles in Pathogenesis and Correlate with Disease Activity. Arthritis Research & Therapy, 24, Article No. 163. https://doi.org/10.1186/s13075-022-02853-3 |
[53] | Sjögren, K., Engdahl, C., Henning, P., Lerner, U.H., Tremaroli, V., Lagerquist, M.K., et al. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367. https://doi.org/10.1002/jbmr.1588 |
[54] | Yan, J., Herzog, J.W., Tsang, K., Brennan, C.A., Bower, M.A., Garrett, W.S., et al. (2016) Gut Microbiota Induce IGF-1 and Promote Bone Formation and Growth. Proceedings of the National Academy of Sciences, 113, E7554-E7563. https://doi.org/10.1073/pnas.1607235113 |
[55] | Liang, B., Burley, G., Lin, S. and Shi, Y. (2022) Osteoporosis Pathogenesis and Treatment: Existing and Emerging Avenues. Cellular & Molecular Biology Letters, 27, Article No. 72. https://doi.org/10.1186/s11658-022-00371-3 |
[56] | Song, S., Guo, Y., Yang, Y. and Fu, D. (2022) Advances in Pathogenesis and Therapeutic Strategies for Osteoporosis. Pharmacology & Therapeutics, 237, Article ID: 108168. https://doi.org/10.1016/j.pharmthera.2022.108168 |
[57] | Yadav, V.K., Balaji, S., Suresh, P.S., Liu, X.S., Lu, X., Li, Z., et al. (2010) Pharmacological Inhibition of Gut-Derived Serotonin Synthesis Is a Potential Bone Anabolic Treatment for Osteoporosis. Nature Medicine, 16, 308-312. https://doi.org/10.1038/nm.2098 |