全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于孟德尔随机化探讨免疫细胞与散发型克雅氏病的因果关系
A Mendelian Randomization Study on the Causal Relationship between Immune Cells and Sporadic Creutzfeldt-Jakob Disease

DOI: 10.12677/hjbm.2024.144068, PP. 624-636

Keywords: 免疫细胞,散发型克雅氏病,孟德尔随机化,因果关系
Immune Cell
, Sporadic Creutzfeldt-Jakob Disease, Mendelian Randomization, Causal Relationship

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:采用两样本孟德尔随机化(MR)方法研究731种免疫细胞表型与散发型克雅氏病(sporadic Creutzfeld-Jacob disease, sCJD)发病风险的因果效应。方法:在全基因组关联研究数据库(genome wide association study, GWAS)中筛选符合条件的731种免疫细胞表型及散发型克雅氏病的因果关系。共纳入了四种类型的免疫特征(MFI, RC, AC和MP)。综合敏感性分析用于验证结果的异质性和水平多向性。结果:IVW结果显示免疫细胞与免疫细胞发病风险存在因果效应,其中四种免疫表型对散发型克雅氏病的保护作用:CD24+ CD27+ %lymphocyte (OR = 0.925, 95% CI: 0.863~0.991, P = 0.027)、CX3CR1 on monocyte (OR = 0.924, 95% CI: 0.859~0.994, P = 0.034)、SSC-A on myeloid DC (OR = 0.857, 95% CI: 0.740~0.993, P = 0.040)、Unsw mem AC (OR = 0.844, 95% CI: 0.718~0.992, P = 0.040)。六种免疫表型对散发型克雅氏病的危害作用:CD28? CD8dim %T cell (OR = 1.099, 95% CI: 1.012~1.195, P = 0.025)、CD40 on CD14? CD16+ monocyte (OR = 1.062, 95% CI: 1.000~1.129, P = 0.050)、CD62L? myeloid DC %DC (OR = 1.092, 95% CI: 1.009~1.183, P = 0.013)、Mo MDSC AC (OR = 1.123, 95% CI: 1.036~1.217, P = 0.005)、SSC-A on CD4+ (OR = 1.147, 95% CI: 1.035~1.271, P = 0.028)、SSC-A on NK (OR = 1.116, 95% CI: 1.010~1.232, P = 0.031)。结论:我们的研究通过基因手段证明了免疫细胞与散发型克雅氏病之间的密切联系,从而为今后的临床研究与预防提供了指导。
Objective: This paper aims to investigate the causal effects of 731 immune cell phenotypes and the risk of sporadic Creutzfeld-Jacob disease (sCJD) using a two-sample Mendelian randomization (MR) approach. Methods: Eligible 731 immune cell phenotypes were screened for causal association with sporadic Creutzfeldt-Jakob disease (sCJD) in the genome wide association study (GWAS) database. A total of four types of immune profiles (MFI, RC, AC and MP) were included. Integrated sensitivity analysis was used to validate the heterogeneity and horizontal multidirectionality of the results. Results: IVW results showed a causal effect of immune cells and risk of immune cell pathogenesis, with four immune phenotypes protective against disseminated Creutzfeldt-Jakob disease: CD24+ CD27+ %lymphocyte (OR = 0.925, 95% CI: 0.863~0.991, P = 0.027), CX3CR1 on monocyte (OR = 0.924, 95% CI: 0.859~0.994, P = 0.034), SSC-A on myeloid DC (OR = 0.857, 95% CI: 0.740~0.993, P = 0.040), Unsw mem AC (OR = 0.844, 95% CI: 0.718~0.992, P = 0.040). The hazardous effects of six immunophenotypes on disseminated Creutzfeldt-Jakob disease: CD28? CD8dim %T cell (OR = 1.099, 95% CI: 1.012~1.195, P = 0.025), CD40 on CD14? CD16+ monocyte (OR = 1.062, 95% CI: 1.000~1.129, P = 0.050), CD62L? myeloid DC %DC (OR = 1.092, 95% CI: 1.009~1.183, P = 0.013), Mo MDSC AC (OR = 1.123, 95% CI: 1.036~1.217, P = 0.005), SSC-A on CD4+ (OR = 1.147, 95% CI: 1.035~1.271, P = 0.028), SSC-A on NK (OR = 1.116, 95% CI: 1.010~1.232, P = 0.031).

References

[1]  Verma, M., Obergfell, K., Topp, S., Panier, V. and Wu, J. (2023) The Next-Generation CAR-T Therapy Landscape. Nature Reviews Drug Discovery, 22, 776-777.
https://doi.org/10.1038/d41573-023-00140-7
[2]  Irvine, D.J., Maus, M.V., Mooney, D.J. and Wong, W.W. (2022) The Future of Engineered Immune Cell Therapies. Science, 378, 853-858.
https://doi.org/10.1126/science.abq6990
[3]  Collins, S.J., Lawson, V.A. and Masters, C.L. (2004) Transmissible Spongiform Encephalopathies. The Lancet, 363, 51-61.
https://doi.org/10.1016/s0140-6736(03)15171-9
[4]  Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., et al. (2020) Tumor Microenvironment Complexity and Therapeutic Implications at a Glance. Cell Communication and Signaling, 18, Article No. 59.
https://doi.org/10.1186/s12964-020-0530-4
[5]  Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., et al. (2014) Single-Cell RNA-Seq Reveals Dynamic Paracrine Control of Cellular Variation. Nature, 510, 363-369.
https://doi.org/10.1038/nature13437
[6]  Smolders, J., Steelman, A.J. and Inoue, M. (2023) Editorial: Environmental Factors Influencing the Immune Functions during Multiple Sclerosis. Frontiers in Immunology, 14, Article ID: 1141014.
https://doi.org/10.3389/fimmu.2023.1141014
[7]  Feng, S., Zhao, X., Zhou, X., Ye, X., Yu, X., Jiang, W., et al. (2021) Epidemiological and Clinical Characteristics of Sporadic Creutzfeldt-Jakob Disease: A Retrospective Study in Eastern China. Frontiers in Neurology, 12, Article ID: 700485.
https://doi.org/10.3389/fneur.2021.700485
[8]  Orrù, V., Steri, M., Sidore, C., Marongiu, M., Serra, V., Olla, S., et al. (2020) Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1036-1045.
https://doi.org/10.1038/s41588-020-0684-4
[9]  Jones, E., Hummerich, H., Viré, E., Uphill, J., Dimitriadis, A., Speedy, H., et al. (2020) Identification of Novel Risk Loci and Causal Insights for Sporadic Creutzfeldt-Jakob Disease: A Genome-Wide Association Study. The Lancet Neurology, 19, 840-848.
https://doi.org/10.1016/s1474-4422(20)30273-8
[10]  Freuer, D., Meisinger, C. and Linseisen, J. (2021) Causal Relationship between Dietary Macronutrient Composition and Anthropometric Measures: A Bidirectional Two-Sample Mendelian Randomization Analysis. Clinical Nutrition, 40, 4120-4131.
https://doi.org/10.1016/j.clnu.2021.01.047
[11]  Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601.
https://doi.org/10.1136/bmj.k601
[12]  Pierce, B.L., Ahsan, H. and VanderWeele, T.J. (2010) Power and Instrument Strength Requirements for Mendelian Randomization Studies Using Multiple Genetic Variants. International Journal of Epidemiology, 40, 740-752.
https://doi.org/10.1093/ije/dyq151
[13]  Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314.
https://doi.org/10.1002/gepi.21965
[14]  Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698.
https://doi.org/10.1038/s41588-018-0099-7
[15]  Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the Mr-Egger Method. European Journal of Epidemiology, 32, 377-389.
https://doi.org/10.1007/s10654-017-0255-x
[16]  Centers for Disease Control and Prevention (CDC). About Prion Diseases|Prions|CDC.
https://www.cdc.gov/prions/index.html
[17]  Soto, C. and Satani, N. (2011) The Intricate Mechanisms of Neurodegeneration in Prion Diseases. Trends in Molecular Medicine, 17, 14-24.
https://doi.org/10.1016/j.molmed.2010.09.001
[18]  Szpak, G., et al. (2006) The Brain Immune Response in Human Prion Diseases. Microglial Activation and Microglial Disease. I. Sporadic Creutzfeldt-Jakob Disease. Folia Neuropathologica, 44, 202-213.
https://pubmed.ncbi.nlm.nih.gov/17039416/
[19]  Xiong, H., Tang, Z., Xu, Y., Shi, Z., Guo, Z., Liu, X., et al. (2022) Cd19+CD24highCD27+ B Cell and Interleukin 35 as Potential Biomarkers of Disease Activity in Systemic Lupus Erythematosus Patients. Advances in Rheumatology, 62, Article No. 48.
https://doi.org/10.1186/s42358-022-00279-8
[20]  Moon, S.Y., Han, M., Ryu, G., Shin, S., Lee, J.H. and Lee, C.S. (2023) Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. International Journal of Molecular Sciences, 24, Article No. 15072.
https://doi.org/10.3390/ijms242015072
[21]  Ishida, Y., Gao, J. and Murphy, P.M. (2008) Chemokine Receptor CX3CR1 Mediates Skin Wound Healing by Promoting Macrophage and Fibroblast Accumulation and Function. The Journal of Immunology, 180, 569-579.
https://doi.org/10.4049/jimmunol.180.1.569
[22]  Probasco, J.C. (2022) First-in-Human Immunotherapy Treatment Trial in Creutzfeldt-Jakob Disease. NEJM Journal Watch.
https://www.jwatch.org/na54902/2022/05/17/first-human-immunotherapy-treatment-trial-creutzfeldt
[23]  Liu, F., Lü, W. and Liu, L. (2024) New Implications for Prion Diseases Therapy and Prophylaxis. Frontiers in Molecular Neuroscience, 17, Article ID: 1324702.
https://doi.org/10.3389/fnmol.2024.1324702
[24]  Boston University School of Medicine (2024) Drug Compounds to Combat Neurodegenerative Diseases. ScienceDaily.
https://www.sciencedaily.com/releases/2024/05/240515122734.htm

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133