全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Natural Processes on Sea Level Change along the West African Coastline

DOI: 10.4236/ojms.2024.144005, PP. 78-95

Keywords: Coastal Sea Level, River Discharge, Heat Content, West African Coast

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coastal hazards induced by meteo-marine forcing are exacerbated by sea level change along the West African coastline. Changes in sea level are induced by ocean processes such as ocean heat content and river discharge. However, although these processes control largely change in sea level, they remain poorly understood. This study analyzes changes in ocean heat content, river discharge, and sea level and establishes an interconnection between these parameters using several statistical methods over the 1993-2021 period. Results showed a significant correlation between sea level and ocean heat content at 2000 m depth. The yearly minimum value appears in July from Cote d’Ivoire to Benin, whilst this value appears in June in Nigeria. The temporal variability of ocean heat content, river discharge and sea level along the West African coastline exhibits three or four periods interrupted by some breakpoints with unequal duration. The results indicate that the 1993-2000 period was dominated by an increasing ocean heat content along the coastline, while the period after the 2000s exhibits mostly a decreasing trend. Positive and negative trends characterized river discharge and sea level along this coastline. The result of multiple linear regression between sea level, river discharge and ocean heat content is a good approximation of sea level trend along the West African coastline. The results of this study could be used to predict future sea level trends along the coast.

References

[1]  Dada, O.A., Almar, R., Morand, P., Bergsma, E.W.J., Angnuureng, D.B. and Minderhoud, P.S.J. (2023) Future Socioeconomic Development along the West African Coast Forms a Larger Hazard than Sea Level Rise. Communications Earth & Environment, 4, Article No. 150.
https://www.nature.com/commsenv/
https://doi.org/10.1038/s43247-023-00807-4
[2]  Tano, A.R., Djakouré, S., Yao, S., Kouadio, Y. and Aman, A. (2023) Characterization of Coastal Flooding Events along Cote d’Ivoire (West Africa). Journal of Coastal Research, 39, 494-501.
https://doi.org/10.2112/jcoastres-d-22-00042.1
[3]  Tano, R.A., Aman, A., Kouadio, K.Y., Toualy, E., Ali, K.E. and Assamoi, P. (2016) Assessment of the Ivorian Coastal Vulnerability. Journal of Coastal Research, 32, 1495-1503.
[4]  Tano, A.R. (2017) Etude de la vulnérabilité de la zone côtière de la Cote d’Ivoire à partir de paramètres environnementaux et anthropiques. Thèse Unique de Doctorat, Université Félix Houphouët-Boigny.
[5]  Toualy, E., Aman, A., Koffi, P., Marin, F. and Wango, T. (2015) Ocean Swell Variability along the Northern Coast of the Gulf of Guinea. African Journal of Marine Science, 37, 353-361.
https://doi.org/10.2989/1814232x.2015.1074940
[6]  Woodworth, P.L., Foden, P., Pugh, J., Mathews, A., Aarup, T., Aman, A., et al. (2009) Insight into Long Term Sea Level Change Based on New Tide Gauge Installations at Takoradi, Aden and Karachi. International Hydrographic Review, 1, 18-22.
[7]  Lorbacher, K., Marsland, S.J., Church, J.A., Griffies, S.M. and Stammer, D. (2012) Rapid Barotropic Sea Level Rise from Ice Sheet Melting. Journal of Geophysical Research: Oceans, 117, C06003.
https://doi.org/10.1029/2011jc007733
[8]  Wu, Q., Zhang, X., Church, J.A. and Hu, J. (2017) Variability and Change of Sea Level and Its Components in the Indo-Pacific Region during the Altimetry Era. Journal of Geophysical Research: Oceans, 122, 1862-1881.
https://doi.org/10.1002/2016jc012345
[9]  Pham, D.T., Llovel, W., Nguyen, T.M., Le, H.Q., Le, M.N. and Ha, H.T. (2024) Sea-Level Trends and Variability along the Coast of Vietnam over 2002-2018: Insights from the X-TRACK/ALES Altimetry Dataset and Coastal Tide Gauges. Advances in Space Research, 73, 1630-1645.
https://doi.org/10.1016/j.asr.2023.10.041
[10]  Church, J.A., White, N.J., Domingues, C.M., Monselesan, D.P. and Miles, E.R. (2013) Sea-Level and Ocean Heat-Content Change. International Geophysics, 103, 697-725.
https://doi.org/10.1016/b978-0-12-391851-2.00027-1
[11]  Palmer, M.D., Domingues, C.M., Slangen, A.B.A. and Boeira Dias, F. (2021) An Ensemble Approach to Quantify Global Mean Sea-Level Rise over the 20th Century from Tide Gauge Reconstructions. Environmental Research Letters, 16, Article 044043.
https://doi.org/10.1088/1748-9326/abdaec
[12]  Cazenave, A., Palanisamy, H. and Ablain, M. (2018) Contemporary Sea Level Changes from Satellite Altimetry: What Have We Learned? What Are the New Challenges? Advances in Space Research, 62, 1639-1653.
https://doi.org/10.1016/j.asr.2018.07.017
[13]  Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., et al. (2013) Sea Level Change. In: Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[14]  Woodworth, P.L., Melet, A., Marcos, M., Ray, R.D., Wöppelmann, G., Sasaki, Y.N., et al. (2019) Forcing Factors Affecting Sea Level Changes at the Coast. Surveys in Geophysics, 40, 1351-1397.
https://doi.org/10.1007/s10712-019-09531-1
[15]  Angnuureng, D.B., Appeaning Addo, K., Almar, R. and Dieng, H. (2018) Influence of Sea Level Variability on a Micro-Tidal Beach. Natural Hazards, 93, 1611-1628.
https://doi.org/10.1007/s11069-018-3370-4
[16]  Rhodes, C.J. (2018) Rising Sea Levels—By How Much, and Why? Science Progress, 101, 397-410.
https://doi.org/10.3184/003685018x15361550522040
[17]  Piecuch, C.G., Bittermann, K., Kemp, A.C., Ponte, R.M., Little, C.M., Engelhart, S.E., et al. (2018) River-Discharge Effects on United States Atlantic and Gulf Coast Sea-Level Changes. Proceedings of the National Academy of Sciences, 115, 7729-7734.
https://doi.org/10.1073/pnas.1805428115
[18]  Giffard, P., Llovel, W., Jouanno, J., Morvan, G. and Decharme, B. (2019) Contribution of the Amazon River Discharge to Regional Sea Level in the Tropical Atlantic Ocean. Water, 11, Article No. 2348.
https://doi.org/10.3390/w11112348
[19]  Piecuch, C.G. and Wadehra, R. (2020) Dynamic Sea Level Variability Due to Seasonal River Discharge: A Preliminary Global Ocean Model Study. Geophysical Research Letters, 47, e2020GL086984.
https://doi.org/10.1029/2020gl086984
[20]  Moon, J. and Tony Song, Y. (2013) Sea Level and Heat Content Changes in the Western North Pacific. Journal of Geophysical Research: Oceans, 118, 2014-2022.
https://doi.org/10.1002/jgrc.20096
[21]  Levitus, S., Antonov, J.I., Boyer, T.P., Baranova, O.K., Garcia, H.E., Locarnini, R.A., et al. (2012) World Ocean Heat Content and Thermosteric Sea Level Change (0-2000 m), 1955-2010. Geophysical Research Letters, 39, L10603.
https://doi.org/10.1029/2012gl051106
[22]  Copernicus Climate Change Service, Climate Data Store (2018) Sea Level Gridded Data from Satellite Observations for the Global Ocean from 1993 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
https://doi.org/10.24381/cds.4c328c78
[23]  Grimaldi, S., Salamon, P., Disperati, J., Zsoter, E., Russo, C., Ramos, A., et al. (2022) River Discharge and Related Historical Data from the Global Flood Awareness System. v4.0. European Commission, Joint Research Centre (JRC).
https://ewds.climate.copernicus.eu/datasets/cems-glofas-historical?tab=overview
[24]  Cheng, L., Trenberth, K.E., Fasullo, J., Boyer, T., Abraham, J. and Zhu, J. (2017) Improved Estimates of Ocean Heat Content from 1960 to 2015. Science Advances, 3, e1601545.
https://doi.org/10.1126/sciadv.1601545
[25]  Aman, A., Tano, R.A., Toualy, E., Silué, F., Addo, K.A. and Folorunsho, R. (2019) Physical Forcing Induced Coastal Vulnerability along the Gulf of Guinea. Journal of Environmental Protection, 10, 1194-1211.
https://doi.org/10.4236/jep.2019.109071
[26]  Killick, R., Fearnhead, P. and Eckley, I.A. (2012) Optimal Detection of Changepoints with a Linear Computational Cost. Journal of the American Statistical Association, 107, 1590-1598.
https://doi.org/10.1080/01621459.2012.737745
[27]  Wambui, G.D., Waititu, G.A. and Wanjoya, A. (2015) The Power of the Pruned Exact Linear Time (PELT) Test in Multiple Changepoint Detection. American Journal of Theoretical and Applied Statistics, 4, 581-586.
https://doi.org/10.11648/j.ajtas.20150406.30
[28]  Wang, X.L. and Swail, V.R. (2001) Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes. Journal of Climate, 14, 2204-2221.
https://doi.org/10.1175/1520-0442(2001)014<2204:coewhi>2.0.co;2
[29]  Chatterjee, S. and Hadi, A.S. (1986) Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, 1, 379-393.
https://doi.org/10.1214/ss/1177013622
[30]  Kumar, V., Melet, A., Meyssignac, B., Ganachaud, A., Kessler, W.S., Singh, A., et al. (2018) Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014). Journal of Geophysical Research: Oceans, 123, 1502-1518.
https://doi.org/10.1002/2017jc013053
[31]  Evadzi, P.I.K. (2017) Regional Sea-Level at the Retreating Coast of Ghana under a Changing Climate. Ph.D. Thesis, University of Hamburg.
[32]  Ibebuchi, C.C. and Abu, I. (2023) Rainfall Variability Patterns in Nigeria during the Rainy Season. Scientific Reports, 13, Article No. 7888.
https://doi.org/10.1038/s41598-023-34970-7
[33]  Tano, A.R., Bouo, F.D.B., Kouamé, J.K., Tchétché, Y., Zézé, S.D. and Ouattara, B. (2023) Rainfall Variability and Trends in West Africa. Atmospheric and Climate Sciences, 13, 72-83.
https://doi.org/10.4236/acs.2023.131006
[34]  Lavielle, M. (2005) Using Penalized Contrasts for the Change-Point Problem. Signal Processing, 85, 1501-1510.
https://doi.org/10.1016/j.sigpro.2005.01.012
[35]  Ebodé, V.B. (2022) Impact of Rainfall Variability and Land-Use Changes on River Discharge in Sanaga Catchment (Forest-Savannah Transition Zone in Central Africa). Hydrology Research, 53, 1017-1030.
https://doi.org/10.2166/nh.2022.046
[36]  Stanzel, P., Kling, H. and Bauer, H. (2018) Climate Change Impact on West African Rivers under an Ensemble of CORDEX Climate Projections. Climate Services, 11, 36-48.
https://doi.org/10.1016/j.cliser.2018.05.003
[37]  Neumann, R., Jung, G., Laux, P. and Kunstmann, H. (2007) Climate Trends of Temperature, Precipitation and River Discharge in the Volta Basin of West Africa. International Journal of River Basin Management, 5, 17-30.
https://doi.org/10.1080/15715124.2007.9635302
[38]  Topé, G.D.A., Alory, G., Djakouré, S., Da-Allada, C.Y., Jouanno, J. and Morvan, G. (2023) How Does the Niger River Warm Coastal Waters in the Northern Gulf of Guinea? Frontiers in Marine Science, 10, Article 1187202.
https://doi.org/10.3389/fmars.2023.1187202
[39]  Liang, X., Liu, C., Ponte, R.M. and Chambers, D.P. (2021) A Comparison of the Variability and Changes in Global Ocean Heat Content from Multiple Objective Analysis Products during the Argo Period. Journal of Climate, 34, 7875-7895.
https://doi.org/10.1175/jcli-d-20-0794.1
[40]  Liao, F., Wang, X.H. and Liu, Z. (2022) Comparison of Ocean Heat Content Estimated Using Two Eddy-Resolving Hindcast Simulations Based on OFES1 and OFES2. Geoscientific Model Development, 15, 1129-1153.
https://doi.org/10.5194/gmd-15-1129-2022
[41]  Palmer, M.D., Roberts, C.D., Balmaseda, M., Chang, Y.-S., Chepurin, G., Ferry, N., et al. (2015) Ocean Heat Content Variability and Change in an Ensemble of Ocean Reanalyses. Climate Dynamics, 49, 909-930.
https://doi.org/10.1007/s00382-015-2801-0
[42]  Cheng, L., Trenberth, K.E., Fasullo, J.T., Mayer, M., Balmaseda, M. and Zhu, J. (2019) Evolution of Ocean Heat Content Related to ENSO. Journal of Climate, 32, 3529-3556.
https://doi.org/10.1175/jcli-d-18-0607.1
[43]  Cheng, L., Abraham, J., Trenberth, K.E., Fasullo, J., Boyer, T., Mann, M.E., et al. (2022) Another Record: Ocean Warming Continues through 2021 Despite La Niña Conditions. Advances in Atmospheric Sciences, 39, 373-385.
https://doi.org/10.1007/s00376-022-1461-3
[44]  Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S. and Fasullo, J. (2012) The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39, L19602.
https://doi.org/10.1029/2012gl053055
[45]  Koranteng, K.A. and Pezennec, O. (1998) Variability and Trends in Some Environmental Time Series along the Ivorian and the Ghanaian Coasts. In: Durand, M.A., et al., Eds., Global versus Local Changes in Upwelling Systems, ORSTOM, 167-177.
[46]  Lamboni, B., Emmanuel, L.A., Manirakiza, C. and Djibib, Z.M. (2019) Variability of Future Rainfall over the Mono River Basin of West-Africa. American Journal of Climate Change, 8, 137-155.
https://doi.org/10.4236/ajcc.2019.81008
[47]  Kwawuvi, D., Mama, D., Agodzo, S.K., Hartmann, A., Larbi, I., Bessah, E., et al. (2022) Spatiotemporal Variability and Change in Rainfall in the Oti River Basin, West Africa. Journal of Water and Climate Change, 13, 1151-1169.
https://doi.org/10.2166/wcc.2022.368
[48]  Ampadu, B. (2021) Overview of Hydrological and Climatic Studies in Africa: The Case of Ghana. Cogent Engineering, 8, Article 1914288.
https://doi.org/10.1080/23311916.2021.1914288
[49]  Obahoundje, S., Diedhiou, A., Kouassi, K.L., Ta, M.Y., Mortey, E.M., Roudier, P., et al. (2022) Analysis of Hydroclimatic Trends and Variability and Their Impacts on Hydropower Generation in Two River Basins in Côte d’Ivoire (West Africa) during 1981-2017. Environmental Research Communications, 4, Article 065001.
https://doi.org/10.1088/2515-7620/ac71fa
[50]  Ojelabi, O., Hounkpè, J., Oluwasemire, K.O. and Lawin, A.E. (2023) Hydroclimatic Trends, Breakpoints and Future Projection Analysis of the Ogun River Basin in West Africa. Water Practice & Technology, 18, 2023-2044.
https://doi.org/10.2166/wpt.2023.137
[51]  Llovel, W. and Lee, T. (2015) Importance and Origin of Halosteric Contribution to Sea Level Change in the Southeast Indian Ocean during 2005-2013. Geophysical Research Letters, 42, 1148-1157.
https://doi.org/10.1002/2014GL062611
[52]  Li, X., Cai, Y., Liu, Z., Mo, X., Zhang, L., Zhang, C., et al. (2023) Impacts of River Discharge, Coastal Geomorphology, and Regional Sea Level Rise on Tidal Dynamics in Pearl River Estuary. Frontiers in Marine Science, 10, Article 1065100.
https://doi.org/10.3389/fmars.2023.1065100
[53]  Yahya Surya, M., He, Z., Xia, Y. and Li, L. (2019) Impacts of Sea Level Rise and River Discharge on the Hydrodynamics Characteristics of Jakarta Bay (Indonesia). Water, 11, Article No. 1384.
https://www.mdpi.com/journal/water
https://doi.org/10.3390/w11071384
[54]  Talke, S.A., Mahedy, A., Jay, D.A., Lau, P., Hilley, C. and Hudson, A. (2020) Sea Level, Tidal, and River Flow Trends in the Lower Columbia River Estuary, 1853-Present. Journal of Geophysical Research: Oceans, 125, e2019JC015656.
https://doi.org/10.1029/2019jc015656
[55]  Toualy, E. (2013) Variabilité Temporelle de l’Upwelling à la Côte Nord du Golfe de Guinée. Thèse Unique de doctorat, Université Félix Houphouët Boigny.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133