全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Plant Cultivation: A Strong and Sustainable Response to CO2 Emissions

DOI: 10.4236/gep.2024.1210005, PP. 68-88

Keywords: Carbon, Capture, Storage Duration, Whole Plants, Ocean

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to the quantities of plant and animal products placed on the world market in 2022, agriculture and forestry captured 20.1 ± 1.5 billion tonnes (Gt or Pg) of CO2, with a weighted mean duration of the corresponding storage of 10.9 ± 3.3 years. These figures are supplemented here by the unharvested above-ground and below-ground parts of plants that are left in place and increase the soil organic carbon pool. This brings the capture by cultivated whole plants to 41.0 ± 0.6 GtCO2, and the storage duration weighted mean to 26.3 ± 2.0 years in 2022. This was the largest global contribution to the reduction of atmospheric CO2 by amplitude and duration, which bio-remediated the global anthropogenic emissions totally, cancelling their influence on climate. The enrichment of the atmosphere with CO2 comes probably from the ocean, which could be a source and not a sink. Complementary approaches, freed from doctrinal preconceptions, should make it possible to clarify further the compensations of CO2 emissions by plants and their environmental consequences.

References

[1]  Amthor, J. S., & Baldocchi, D. D. (2001). Terrestrial Higher Plant Respiration and Net Primary Production. In J. Roy, B. Saugier, & H. A. Mooney (Eds.), Terrestrial Global Productivity (pp. 33-59). Academic Press.
https://doi.org/10.1016/b978-012505290-0/50004-1
[2]  Balesdent, J., & Recous, S. (1997). Les temps de résidence du carbone et le potentiel de stockage de carbone dans quelques sols cultivés français. Canadian Journal of Soil Science, 77, 187-193.
https://doi.org/10.4141/s96-109
[3]  Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. (2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 329, 834-838.
https://doi.org/10.1126/science.1184984
[4]  Blume, H.P., Brümmer, G. W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., et al. (2015). Scheffer/Schachtschabel Soil Science. Springer Berlin.
https://doi.org/10.1007/978-3-642-30942-7
[5]  Canadell, J.G., et al. (2021). Global Carbon and Other Biogeochemical Cycles and Feedbacks. IDM AR6 WGI. Final Government Distribution.
[6]  Ciais, P., et al. (2013). Carbon and Other Biogeochemical Cycles. In: M. Tignor, et al. (Eds.), Tansley Review 43: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465-570). Cambridge University Press.
[7]  Dippery, J. K., Tissue, D. T., Thomas, R. B., & Strain, B. R. (1995). Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 13-20.
https://doi.org/10.1007/bf00328894
[8]  Dusenge, M. E., Galvao Duarte, A., & Way, D. A. (2018). Plant Carbon Metabolism and Climate Change: Elevated CO2 and Temperature Impacts on Photosynthesis, Photorespiration and Respiration. New Phytologist, 221, 32-49.
https://doi:10.1111/nph.15283
[9]  FAO (2024). Fishery and Aquaculture Statistics—Yearbook 2021.
https://doi.org/10.4060/cc9523en
[10]  FAO (n.d.). FAOSTAT Data.
https://www.fao.org/faostat/en/#data
[11]  Fay, A.R., Munro, D. R., McKinley, G. A., Pierrot, D., Sutherland, S. C., Sweeney, C., et al. (2023). Updated Climatological Mean Delta fCO2 and Net Sea-Air CO2 Flux Over the Global Open Ocean Regions. Earth System Science Data.
https://doi.org/10.5194/essd-2023-429
[12]  Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., et al. (2022). Global Carbon Budget 2022. Earth System Science Data, 14, 4811-4900.
https://doi.org/10.5194/essd-14-4811-2022
[13]  Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. (2023). Global Carbon Budget 2023. Earth System Science Data, 15, 5301-5369.
https://doi.org/10.5194/essd-15-5301-2023
[14]  Global CCS Institute (2023). The Global Status of CCS: 2023.
[15]  Godwin, B. (2022). We Are in a CO2 Drought—Not Much Time Left for Life on Planet Earth. Preprint.
[16]  Gundersen, P., Thybring, E. E., Nord-Larsen, T., Vesterdal, L., Nadelhoffer, K. J., & Johannsen, V. K. (2021). Old-Growth Forest Carbon Sinks Overestimated. Nature, 591, E21-E23.
https://doi.org/10.1038/s41586-021-03266-z
[17]  Hay, R. K. M. (1995). Harvest Index: A Review of Its Use in Plant Breeding and Crop Physiology. Annals of Applied Biology, 126, 197-216.
https://doi.org/10.1111/j.1744-7348.1995.tb05015.x
[18]  Luyssaert, S., Schulze, E.-D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., et al. (2008). Old-Growth Forests as Global Carbon Sinks. Nature, 455, 213-215.
https://doi.org/10.1038/nature07276
[19]  Luyssaert, S., Schulze, E.-D., Knohl, A., Law, B. E., Ciais, P., & Grace, J. (2021). Reply to: Old-Growth Forest Carbon Sinks Overestimated. Nature, 591, E24-E25.
https://doi.org/10.1038/s41586-021-03267-y
[20]  Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Global Food Security, 14, 1-8.
https://doi.org/10.1016/j.gfs.2017.01.001
[21]  Muller-Feuga, A. (2023). CO2 Air-Water Exchanges during Seasonal and Glacial Cycles. Journal of Agricultural Chemistry and Environment, 12, 365-385.
https://doi.org/10.4236/jacen.2023.124026
[22]  Muller-Feuga, A. (2024). The Recognition of Carbon Capture and Storage by Plants. Journal of Agricultural Science, 16, 1-9.
https://doi.org/10.5539/jas.v16n7p1
[23]  Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., et al. (2024). The Enduring World Forest Carbon Sink. Nature, 631, 563-569.
https://doi.org/10.1038/s41586-024-07602-x
[24]  Pellerin, S., et al. (2019). Stocker du carbone dans les sols français. Quel potentiel au regard de lobjectif 4 pour 1000 et à quel coût? Synthèse du rapport d’étude. INRA (France), 114.
[25]  Ritchie, H., & Roser, M. (2024). CO2 Emissions. Our World in Data.
https://ourworldindata.org/co2-emissions
[26]  Saugier, B., Roy, J., & Mooney, H. A. (2001). Estimations of Global Terrestrial Productivity. In J. Roy, B. Saugier, & H. A. Mooney (Eds.), Terrestrial Global Productivity (pp. 543-557). Academic Press.
https://doi.org/10.1016/b978-012505290-0/50024-7
[27]  Sorokhtin, O. G., Chilingar, G. V., & Khilyuk, L. F. (2007). Global Warming and Global Cooling: Evolution of Climate on Earth. Developments in Earth and Environmental Sciences, 5, 11-16.
https://doi.org/10.1016/s1571-9197(06)05001-4
[28]  Tijero, V., Girardi, F., & Botton, A. (2021). Fruit Development and Primary Metabolism in Apple. Agronomy, 11, Article 1160.
https://doi.org/10.3390/agronomy11061160
[29]  Vidal, E., West, T. A. P., Lentini, M. W., de Souza, S. E. X. F., Klauberg, C., & Waldhoff, P. (2020). Sustainable Forest Management (SFM) of Tropical Moist Forests: The Case of the Brazilian Amazon. In J. Blaser, & P. D. Hardcastle (Eds.), Achieving Sustainable Management of Tropical Forests (pp. 619-650). Burleigh Dodds Science Publishing Limited.
[30]  Vinos, J. (2022). Climate of the Past. Present and Future. A Scientific Debate (2nd ed.). Critical Science Press.
[31]  Wang, J., Sun, J., Xia, J., He, N., Li, M., & Niu, S. (2017). Soil and Vegetation Carbon Turnover Times from Tropical to Boreal Forests. Functional Ecology, 32, 71-82.
https://doi.org/10.1111/1365-2435.12914

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133