Obesity is a chronic condition characterised by excess body fat that leads to increased body weight. One of the most effective ways to treat obesity is to use appetite suppressants to reduce food intake. This study aimed to evaluate in vivo reduction of food intake and weight gain caused by Parkiabiglobosa (Pb) fruit pulp. Twenty-four healthy NMRI mice divided into four groups were used for the experiment. Group 1, considered the negative control, received distilled water. Groups 2, 3, and 4 were administered daily with 100, 250 and 500 mg/kg body weight of Pb fruit pulp powder suspension, respectively. The reduction in food intake was assessed in two phases: acute food intake for one day (24 h) and long-term food intake for seven weeks. Nutrient parameters and phenolic compounds in Pb fruit pulp were quantified. The results showed that Pb fruit pulp had a significant effect on reducing acute food intake. At a dose of 250 mg/kg, Pb had the best activity in reducing acute food intake, with an overall reduction rate of approximately 47.98% ± 1.17% compared to the control. Repeated daily administration inhibited food intake with all three doses for 13 days compared to control. Food intake was significantly decreased for up to 31 days by taking a 100 mg/kg dose of Pb (p = 0.0174). Weight gain was significantly lower (p = 0.0003) in mice treated with 100 mg/kg Pb than in controls at the end of 7 weeks. According to the nutritional composition study, Pb fruit pulp contains an abundance of total carbohydrates (68.81% ± 0.32%) and crude fiber (14.35% ± 0.21%). This study demonstrated that Pb fruit pulp effectively reduces food intake in healthy mice. Pb pulp’s richness in crude fiber and phenolic compounds makes it a potential aid in managing obesity.
References
[1]
World Health Organization (2024) International Classification of Adult Underweight, Overweight and Obesity According to BMI. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index
[2]
Ogden, C.L., Carroll, M.D., Fryar, C.D. and Flegal, K.M. (2015) Prevalence of Obesity among Adults and Youth: United States, 2011-2014. NCHS Data Brief. National Center for Health Statistics.
[3]
World Obesity Federation (2024) Obesity Atlas 2024. https://data.worldobesity.org/publications/?cat=22
[4]
Ministère de la Santé (2014) Rapport de l’enquête nationale sur la prévalence des principaux facteurs de risque communs aux maladies non transmissibles au Burkina Faso; enquête STEP 2013.
[5]
Chaudhry, S. (2020) Pharmacotherapy in Obesity. International Journal of Comprehensive and Advanced Pharmacology, 5, 110-117. https://doi.org/10.18231/j.ijcaap.2020.024
[6]
Correia, J., Pataky, Z. and Golay, A. (2014) Comprendre l’obésité en Afrique: Poids du développement et des représentations. Revue Médicale Suisse, 10, 712-716. https://doi.org/10.53738/revmed.2014.10.423.0712
[7]
Scheen, A.J., de Flines, J. and Paquot, N. (2023) Médicaments anti-obésité: Des déceptions aux espoirs. Revue Medicale de Liege, 78, 147-152.
[8]
Silverstone, T. (1992) Appetite Suppressants. Drugs, 43, 820-836. https://doi.org/10.2165/00003495-199243060-00003
[9]
Neary, N.M., Goldstone, A.P. and Bloom, S.R. (2003) Appetite Regulation: From the Gut to the Hypothalamus. Clinical Endocrinology, 60, 153-160. https://doi.org/10.1046/j.1365-2265.2003.01839.x
[10]
Yimam, M., Jiao, P., Hong, M., Brownell, L., Lee, Y., Hyun, E., et al. (2018) Evaluation of Natural Product Compositions for Appetite Suppression. Journal of Dietary Supplements, 16, 86-104. https://doi.org/10.1080/19390211.2018.1429518
[11]
Müller, T.D., Blüher, M., Tschöp, M.H. and DiMarchi, R.D. (2021) Anti-Obesity Drug Discovery: Advances and Challenges. Nature Reviews Drug Discovery, 21, 201-223. https://doi.org/10.1038/s41573-021-00337-8
[12]
Karri, S., Sharma, S., Hatware, K. and Patil, K. (2019) Natural Anti-Obesity Agents and Their Therapeutic Role in Management of Obesity: A Future Trend Perspective. Biomedicine & Pharmacotherapy, 110, 224-238. https://doi.org/10.1016/j.biopha.2018.11.076
[13]
Rao, A., Briskey, D., dos Reis, C. and Mallard, A.R. (2021) The Effect of an Orally-Dosed Caralluma Fimbriata Extract on Appetite Control and Body Composition in Overweight Adults. Scientific Reports, 11, Article No. 6791. https://doi.org/10.1038/s41598-021-86108-2
[14]
Gupta, C. (2015) Appetite Suppressing Phyto Nutrients: Potential for Combating Obesity. Journal of Nutritional Health & Food Engineering, 3, 319-326. https://doi.org/10.15406/jnhfe.2015.03.00108
[15]
Geneslay A. (2013) Intérêt des compléments alimentaires à base de plantes dans les régimes amaigrissants. Diplôme d’Etat de Docteur en Pharmacie, Université d’Angers.
[16]
Zongo, E., Meda, R.N., Gnanou, Y., Gnanou, Y., Kam, S.E., Koama, B.K., et al. (2022) Ethnobotanical Survey of Appetite Suppressant Plants Used in Hauts-Bassins Areas of Burkina Faso. Food and Nutrition Sciences, 13, 1001-1014. https://doi.org/10.4236/fns.2022.1312070
[17]
Pare, D., Hilou, A., Ouedraogo, N. and Guenne, S. (2016) Ethnobotanical Study of Medicinal Plants Used as Anti-Obesity Remedies in the Nomad and Hunter Communities of Burkina Faso. Medicines, 3, Article 9. https://doi.org/10.3390/medicines3020009
[18]
Sama, H., Traoré, M., Guenné, S., Séré, I., Hilou, A. and Dicko, M.H. (2022) Ethnobotanical and Phytochemical Profiling of Medicinal Plants from Burkina Faso Used to Increase Physical Performance. Medicines, 9, Article 10. https://doi.org/10.3390/medicines9020010
[19]
Builders, M.I. (2014) Parkia biglobosa (African Locust Bean Tree). World Journal of Pharmaceutical Research, 3, 1672-1682.
[20]
Gouveia-Nhanca, M., Rolim Bezerra, M.L., Batista, K.S., Pinheiro, R.O., Soares, N.L., de Paiva Sousa, M.C., et al. (2023) The Non-Conventional Edible Plant Foroba (Parkia biglobosa) Has Anti-Obesity Effect, Improves Lipid Peroxidation and Reverses Colon and Hippocampal Lesions in Healthy and Obese Rats. Journal of Functional Foods, 108, Article 105745. https://doi.org/10.1016/j.jff.2023.105745
[21]
Yimam, M., Jiao, P., Hong, M., Brownell, L., Lee, Y., Kim, H., et al. (2019) Morus alba, a Medicinal Plant for Appetite Suppression and Weight Loss. Journal of Medicinal Food, 22, 741-751. https://doi.org/10.1089/jmf.2017.0142
[22]
Association of Officical Analytical Chemists (2012) Official Methods of Analysis of AOAC International. 19th Edition, AOAC International.
[23]
Association Française de Normalisation (1986) Produits Dérivés de Fruits et Légumes: Recueils de normes Françaises.
[24]
International Organization for Standardization (2013) Céréales et légumineuses—Détermination de la teneur en azote et calcul de la teneur en protéines brutes-Méthode de Kjeldahl.
[25]
International Organization for Standardization (2009) Graines oléagineuses—Détermination de la teneur en huile.
[26]
Meda, N.T.R., Lamien-Med, A., Kiendrebeo, M., Lamien, C.E., Coulibaly, A.Y., Millogo-Ra, J., et al. (2010) In Vitro Antioxidant, Xanthine Oxidase and Acetylcholinesterase Inhibitory Activities of Balanites aegyptiaca (L.) Del. (Balanitaceae). Pakistan Journal of Biological Sciences, 13, 362-368. https://doi.org/10.3923/pjbs.2010.362.368
[27]
Agbangnan, P.D.C., Tachon, C., Bonin, H., Chrostowka, A., Fouquet, E. and Sohounhloue, D.C.K. (2012) Phytochemical Study of a Tinctorial Plant of Benin Traditional Pharmacopoeia: The Red Sorghum (Sorghum caudatum) of Benin. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 13, 121-135.
[28]
Sunkara, R. and Verghese, M. (2014) Functional Foods for Obesity Management. Food and Nutrition Sciences, 5, 1359-1369. https://doi.org/10.4236/fns.2014.514148
[29]
Conceição de Oliveira, M., Sichieri, R. and Sanchez Moura, A. (2003) Weight Loss Associated with a Daily Intake of Three Apples or Three Pears among Overweight Women. Nutrition, 19, 253-256. https://doi.org/10.1016/s0899-9007(02)00850-x
[30]
Yimam, M., Jiao, P., Hong, M., Brownell, L., Lee, Y., Hyun, E., et al. (2016) Appetite Suppression and Antiobesity Effect of a Botanical Composition Composed of Morus alba, Yerba mate, and Magnolia Officinalis. Journal of Obesity, 2016, 1-12. https://doi.org/10.1155/2016/4670818
[31]
Colombo, G., Agabio, R., Diaz, G., Lobina, C., Reali, R. and Gessa, G.L. (1998) Appetite Suppression and Weight Loss after the Cannabinoid Antagonist SR 141716. Life Sciences, 63, PL113-PL117. https://doi.org/10.1016/s0024-3205(98)00322-1
[32]
Al Asoom, L., Alassaf, M.A., AlSulaiman, N.S., Boumarah, D.N., Almubireek, A.M., Alkaltham, G.K., et al. (2023) The Effectiveness of Nigella Sativa and Ginger as Appetite Suppressants: An Experimental Study on Healthy Wistar Rats. Vascular Health and Risk Management, 19, 1-11. https://doi.org/10.2147/vhrm.s396295
[33]
Hadri, Z. (2016) Effet des fibres sur la satiété. Thèse de Doctorat, Université Hassiba Ben Bouali.
[34]
Yuliana, N.D., Jahangir, M., Korthout, H., Choi, Y.H., Kim, H.K. and Verpoorte, R. (2011) Comprehensive Review on Herbal Medicine for Energy Intake Suppression. Obesity Reviews, 12, 499-514. https://doi.org/10.1111/j.1467-789x.2010.00790.x
[35]
Josiane, N.M.T., Nikaise, D.N.F., Baudelaire, N.E. and Nicolas, N.Y. (2020) Lipid-lowering and Anti-Lipase Properties of Powder Fractions of Dichrostachys Glomerata Fruits. Asian Journal of Medical Sciences, 11, 69-76. https://doi.org/10.3126/ajms.v11i5.29229
[36]
Bélem, H., Meda, R.N., Koama, B.K., Kagambéga, W., Da, S.N., Drabo, A.F., et al. (2023) Parkia biglobosa (Jacq.) R. Br. Ex G. Don Fruit Pulp Supplementation in the Diet of Local Chickens in Burkina Faso: Effects on Growth Performance and Carcass Characteristics. Food and Nutrition Sciences, 14, 1119-1132. https://doi.org/10.4236/fns.2023.1411070
[37]
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., et al. (2014) Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 156, 84-96. https://doi.org/10.1016/j.cell.2013.12.016
[38]
Mithieux, G. (2022) La néoglucogenèse intestinale: Une fonction insulinomimétique. BiologieAujourd’hui, 216, 37-39. https://doi.org/10.1051/jbio/2022003
[39]
Fernández-Raudales, D., Yor-Aguilar, M., Andino-Segura, J., Hernández, A., Egbert, R. and López-Cintrón, J.R. (2018) Effects of High Plant Protein and High Soluble Fiber Beverages on Satiety, Appetite Control and Subsequent Food Intake in Healthy Men. Food and Nutrition Sciences, 9, 751-762. https://doi.org/10.4236/fns.2018.96057
[40]
Gernah, D.I., Atolagbe, M.O. and Echegwo, C.C. (2007) Nutritional Composition of the African Locust Bean (Parkia biglobosa) Fruit Pulp. Nigerian Food Journal, 25, 190-196. https://doi.org/10.4314/nifoj.v25i1.33669
[41]
Mansuy-Aubert, V. and Ravussin, Y. (2023) Short Chain Fatty Acids: The Messengers from down Below. Frontiers in Neuroscience, 17, Article 1197759. https://doi.org/10.3389/fnins.2023.1197759
[42]
Warrilow, A., Mellor, D., McKune, A., et al. (2018) Graisses alimentaires, fibres, satiété et satiété—Une revue systématique des études aiguës. Journal européen de nutrition clinique, 73, 333-344.
[43]
Daoust, L. (2019) Rôle des polyphénols de petits fruits sur les désordres métaboliques et la dysbiose associés à l’obésité. Diplôme de Maîtrise, Mémoire Université de Laval.
[44]
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., et al. (2014) The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nature Communications, 5, Article No. 3611. https://doi.org/10.1038/ncomms4611
[45]
Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., et al. (2014) Novel Insights of Dietary Polyphenols and Obesity. The Journal of Nutritional Biochemistry, 25, 1-18. https://doi.org/10.1016/j.jnutbio.2013.09.001
[46]
Rodríguez-Pérez, C., Segura-Carretero, A. and del Mar Contreras, M. (2017) Phenolic Compounds as Natural and Multifunctional Anti-Obesity Agents: A Review. Critical Reviews in Food Science and Nutrition, 59, 1212-1229. https://doi.org/10.1080/10408398.2017.1399859
[47]
Bothon, F.T.D., Atindéhou, M.M., Koudoro, Y.A., Lagnika, L. and Avlessi, F. (2023) Parkia biglobosa Fruit Husks: Phytochemistry, Antibacterial, and Free Radical Scavenging Activities. American Journal of Plant Sciences, 14, 150-161. https://doi.org/10.4236/ajps.2023.142012
[48]
Milani, C., Ferrario, C., Turroni, F., Duranti, S., Mangifesta, M., Van Sinderen, D., et al. (2016) Le microbiote intestinal humain et ses liens interactifs avec l’alimentation. Journal de nutrition humaine et de diététique, 29, Article 539546.
[49]
Tang, W.H.W., Kitai, T. and Hazen, S.L. (2017) Le microbiote intestinal et la santé cardiovasculaire et la maladie. Recherche sur la circulation, 120, 1183-1196.
[50]
Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., et al. (2011) The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon. Cell Metabolism, 13, 517-526. https://doi.org/10.1016/j.cmet.2011.02.018
[51]
Vadder, F.D., Gautier-Stein, A. and Mithieux, G. (2013) Les récepteurs µ-opioïdes de la veine porte. MédecineSciences, 29, 31-33. https://doi.org/10.1051/medsci/2013291010
[52]
Cook, T.M., Gavini, C.K., Jesse, J., Aubert, G., Gornick, E., Bonomo, R., et al. (2021) Vagal Neuron Expression of the Microbiota-Derived Metabolite Receptor, Free Fatty Acid Receptor (FFAR3), Is Necessary for Normal Feeding Behavior. Molecular Metabolism, 54, Article 101350. https://doi.org/10.1016/j.molmet.2021.101350
[53]
Kobyliak, N., Virchenko, O. and Falalyeyeva, T. (2015) Rôle physiopathologique de l’hôte le microbiote dans le développement de l’obésité. Journal nutritionnel, 15, 1–12.
[54]
Salas, S.P. and Russo N, M. (2014) Análisis de los principales conflictos éticos entre la Declaración de Helsinki 2008 y su propuesta de cambio. Revistamédica de Chile, 142, 475-480. https://doi.org/10.4067/s0034-98872014000400009