全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SEW-FCE-DS的农业企业绿色创新绩效评价研究
Research on Green Innovation Performance Evaluation of Agribusiness Based on SEW-FCE-DS

DOI: 10.12677/sd.2024.1410282, PP. 2489-2502

Keywords: 农业企业,绿色创新绩效,模糊综合评价法,结构熵权法,D-S证据理论
Agricultural Enterprises
, Green Innovation Performance, Fuzzy Comprehensive Evaluation, Structural Entropy Weight Method, Dempster-Shafer Evidence Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

为客观和准确地评价农业企业绿色创新绩效,本文通过评价指标的海选、筛选与信效度检验三个步骤构建农业企业绿色创新绩效评价指标体系,并提出了基于SEW-FCE-DS的农业企业绿色创新绩效评价模型。首先运用结构熵权法确定指标权重,然后运用模糊综合评价法对农业企业绿色创新绩效进行评价,以判定各个指标对绿色创新绩效的影响程度,再运用D-S证据理论对评价对象总体进行合成评价,增强结果的可靠性与客观性。最后,本文以中国农业企业的先进代表——北大荒集团为例进行分析。结果表明:构建的评价模型能够有效评价农业企业绿色创新绩效水平,从而进一步为后发农业企业绿色创新绩效的提升给予建议。
In order to objectively and accurately evaluate the green innovation performance of agricultural enterprises, this paper starts from the connotation of green innovation performance, combines the characteristics of agricultural enterprises with classical high-frequency indicators, and constructs the green innovation performance evaluation index system of agricultural enterprises through three steps of evaluation index selection, screening and reliability and validity testing. Finally, a green innovation performance evaluation model of agricultural enterprises based on SEW-FCE-DS was proposed. First, the structural entropy weight method is employed to determine the index weight, and then the fuzzy comprehensive evaluation method is used to evaluate the green innovation performance of agricultural enterprises to determine the impact of each index on the green innovation performance. Then the D-S evidence theory is employed to conduct synthetic evaluation of the overall evaluation object to enhance the reliability and objectivity of the results. Finally, this paper takes the advanced representative of China’s agricultural enterprises—Beidahuang Group as an example to analyze. The results show that the constructed evaluation model can effectively evaluate the green innovation performance level of agricultural enterprises, and further provide suggestions for the improvement of green innovation performance of late agricultural enterprises.

References

[1]  加快推进发展方式绿色转型——党的二十大报告在生态环境系统引发热烈反响[J]. 资源节约与环保, 2022(10): 150-151.
[2]  谢琨, 庞凤娇, 陈高敏, 等. 我国钢铁企业绿色技术创新绩效评价研究[J]. 价格理论与实践, 2019(9): 153-156.
[3]  García-Granero, E.M., Piedra-Muñoz, L. and Galdeano-Gómez, E. (2018) ECO-Innovation Measurement: A Review of Firm Performance Indicators. Journal of Cleaner Production, 191, 304-317.
https://doi.org/10.1016/j.jclepro.2018.04.215
[4]  Li, G., Li, X. and Huo, L. (2023) Digital Economy, Spatial Spillover and Industrial Green Innovation Efficiency: Empirical Evidence from China. Heliyon, 9, e12875.
https://doi.org/10.1016/j.heliyon.2023.e12875
[5]  闫华飞, 杨美, 冯兵. 实施长江经济带发展战略提升了地区绿色创新绩效吗?——基于双重差分的实证检验[J]. 生态经济, 2023, 39(9): 50-57+67.
[6]  陈柔霖, 李倩. 企业绿色创新绩效评价体系构建[J]. 长春工业大学学报, 2020, 41(5): 508-513.
[7]  胡俊南, 胡瑾. 江西省战略性新兴产业企业绿色技术创新绩效评价研究[J]. 科技管理研究, 2023, 43(7): 33-41.
[8]  Wang, K., Zhang, F., Xu, R., Miao, Z., Cheng, Y. and Sun, H. (2023) Spatiotemporal Pattern Evolution and Influencing Factors of Green Innovation Efficiency: A China’s City Level Analysis. Ecological Indicators, 146, Article ID: 109901.
https://doi.org/10.1016/j.ecolind.2023.109901
[9]  Zhang, J. and Yin, K. (2023) Application of Gradient Boosting Model to Forecast Corporate Green Innovation Performance. Frontiers in Environmental Science, 11, Article ID: 1252271.
https://doi.org/10.3389/fenvs.2023.1252271
[10]  李守林, 赵瑞, 陈丽华. 基于灰色关联分析和TOPSIS的物流企业创新绩效评价[J]. 工业技术经济, 2018, 37(4): 12-21.
[11]  Li, T., Liang, L. and Han, D. (2018) Research on the Efficiency of Green Technology Innovation in China’s Provincial High-End Manufacturing Industry Based on the RAGA-PP-SFA Model. Mathematical Problems in Engineering, 2018, Article ID: 9463707.
https://doi.org/10.1155/2018/9463707
[12]  熊彬, 李宁, 杨朝均. 中国工业绿色创新绩效的地区差异及趋同性研究[J]. 软科学, 2019, 33(2): 65-68.
[13]  Xia, Q. (2021) Performance Evaluation and Spatio-Temporal Heterogeneity Analysis of Green Technology Innovation in the Yangt River Economic Belt. IOP Conference Series: Earth and Environmental Science, 692, Article ID: 032110.
https://doi.org/10.1088/1755-1315/692/3/032110
[14]  Hu, Y., Wang, C., Zhang, X., Wan, H. and Jiang, D. (2023) Financial Agglomeration and Regional Green Innovation Efficiency from the Perspective of Spatial Spillover. Journal of Innovation & Knowledge, 8, Article ID: 100434.
https://doi.org/10.1016/j.jik.2023.100434
[15]  王春枝, 斯琴. 德尔菲法中的数据统计处理方法及其应用研究[J]. 内蒙古财经学院学报: 综合版, 2011, 9(4): 92-96.
[16]  邱菀华. 管理决策与应用熵学[M]. 北京: 机械工业出版社, 2002.
[17]  程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30(7): 1225-1228.
[18]  杨惠敏, 付萍. 基于熵权的多级模糊综合评价的应用[J]. 华北电力大学学报, 2005(5): 106-109.
[19]  谢丽娟, 陈俏. 模糊综合评判中合成算子的选取[J]. 科协论坛(下半月), 2012(9): 103-104.
[20]  Dempster, A.P. (1967) Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38, 325-339.
https://doi.org/10.1214/aoms/1177698950
[21]  Shafer, G. (1976) A Mathematical Theory of Evidence. Princeton University Press.
[22]  王旋, 狄鹏, 尹东亮. 基于Lance距离和信度熵的冲突证据融合方法[J]. 系统工程与电子技术, 2022, 44(2): 592-602.
[23]  李仕峰, 杨乃定, 刘效广. 基于熵和证据理论的NPD项目复杂性模糊评价[J]. 管理工程学报, 2013, 27(1): 121-126+134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133