全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从遗传学角度来看肠道菌群对青光眼的因果效应:一项孟德尔随机化研究
Causal Effects of Gut Microbiota on Glaucoma from Genetic Perspective: A Mendelian Randomization Study

DOI: 10.12677/acm.2024.14102746, PP. 908-919

Keywords: 肠道菌群,青光眼,因果效应,孟德尔随机化
Gut Microbiota
, Glaucoma, Causal Effect, Mendelian Randomization

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨肠道菌群(GM)对青光眼、原发性开角型青光眼(POAG)和原发性闭角型青光眼(PACG)的因果关系。方法:采用孟德尔随机化分析方法,利用GM相关GWAS数据(18,340例)、青光眼相关GWAS数据(18,902例及358,375对照)、POAG相关GWAS数据(7756例及358,375对照)和PACG相关GWAS数据(1199例及358,375对照)确定GM对青光眼的因果效应。结果以比值比(OR)和95%置信区间(CI)表示。结果:MR分析结果显示,genus LachnospiraceaeUCG010 (IVW, OR = 1.20, 95% CI [1.06, 1.35], P = 0.0029)、genus Ruminiclostridium9 (IVW, OR = 1.26, 95% CI [1.08, 1.46], P = 0.0026)和genus Streptococcus (IVW, OR = 1.17, 95% CI [1.05, 1.30], P = 0.0053)与青光眼风险显著增加有因果关系,而family Oxalobacteraceae (IVW, OR = 0.88, 95% CI [0.80, 0.97], P = 0.0077)与青光眼风险显著降低有因果关系。phylum Actinobacteria与POAG风险显著增加有因果关系。Class Erysipelotrichia、order Erysipelotrichales、family Erysipelotrichaceaegenus Anaerotruncus与PACG风险显着增加有因果关系。结论:我们的研究从不同分类水平的GM进一步证实了GM对青光眼的因果效应,以及GM对POAG和PACG的相对特异性。然而,需要进一步的研究来证实这些结论。
Purpose: To verify the causal effects of gut microbiota (GM) on glaucoma, primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Methods: Mendelian randomization analysis was conducted to identify the causal effect of GM on glaucoma via using GM-related GWAS data (18,340 samples), glaucoma-related GWAS data (18,902 cases and 358,375 controls), POAG-related GWAS data (7756 cases and 358,375 controls) and PACG-related GWAS data (1199 cases and 358,375 controls). The outcome was expressed as odds ratio (OR) with 95% confidence intervals (CI). Results: The MR analysis results presented that genus LachnospiraceaeUCG010 (IVW, OR = 1.20, 95% CI [1.06, 1.35], P = 0.0029), genus Ruminiclostridium9 (IVW, OR = 1.26, 95% CI [1.08, 1.46], P = 0.0026) and genus Streptococcus (IVW, OR = 1.17, 95% CI [1.05, 1.30], P = 0.0053) were causally associated with a significantly increased risk of glaucoma, while family Oxalobacteraceae (IVW, OR = 0.88, 95% CI [0.80, 0.97], P = 0.0077) were causally associated with a significantly decreased risk of glaucoma. Phylum Actinobacteria was causally associated with a significantly increased risk of POAG. Class Erysipelotrichia, order Erysipelotrichales, family Veillonellaceae and genus Anaerotruncus were causally associated with a significantly increased risk of PACG. Conclusions: Our research further confirmed the causal effect of GM on glaucoma from diverse taxonomies and the relative specificity of GM on POAG and PACG. However, further research is needed to confirm these conclusions.

References

[1]  Quigley, H.A. (2011) Glaucoma. The Lancet, 377, 1367-1377.
https://doi.org/10.1016/s0140-6736(10)61423-7
[2]  Tham, Y., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090.
https://doi.org/10.1016/j.ophtha.2014.05.013
[3]  Khaw, P.T. (2004) Glaucoma—1: Diagnosis. BMJ, 328, 97-99.
https://doi.org/10.1136/bmj.328.7431.97
[4]  Wang, Z., Wiggs, J.L., Aung, T., Khawaja, A.P. and Khor, C.C. (2022) The Genetic Basis for Adult Onset Glaucoma: Recent Advances and Future Directions. Progress in Retinal and Eye Research, 90, Article ID: 101066.
https://doi.org/10.1016/j.preteyeres.2022.101066
[5]  Craig, J.E., Han, X., Qassim, A., Hassall, M., Cooke Bailey, J.N., Kinzy, T.G., et al. (2020) Multitrait Analysis of Glaucoma Identifies New Risk Loci and Enables Polygenic Prediction of Disease Susceptibility and Progression. Nature Genetics, 52, 160-166.
https://doi.org/10.1038/s41588-019-0556-y
[6]  Stein, J.D., Khawaja, A.P. and Weizer, J.S. (2021) Glaucoma in Adults—Screening, Diagnosis, and Management. JAMA, 325, 164-174.
https://doi.org/10.1001/jama.2020.21899
[7]  Shi, N., Li, N., Duan, X. and Niu, H. (2017) Interaction between the Gut Microbiome and Mucosal Immune System. Military Medical Research, 4, Article No. 14.
https://doi.org/10.1186/s40779-017-0122-9
[8]  Fang, P., Kazmi, S.A., Jameson, K.G. and Hsiao, E.Y. (2020) The Microbiome as a Modifier of Neurodegenerative Disease Risk. Cell Host & Microbe, 28, 201-222.
https://doi.org/10.1016/j.chom.2020.06.008
[9]  Rowan, S., Jiang, S., Korem, T., Szymanski, J., Chang, M., Szelog, J., et al. (2017) Involvement of a Gut-Retina Axis in Protection against Dietary Glycemia-Induced Age-Related Macular Degeneration. Proceedings of the National Academy of Sciences of the United States of America, 114, E4472-E4481.
https://doi.org/10.1073/pnas.1702302114
[10]  Brown, E.M., Kenny, D.J. and Xavier, R.J. (2019) Gut Microbiota Regulation of T Cells during Inflammation and Autoimmunity. Annual Review of Immunology, 37, 599-624.
https://doi.org/10.1146/annurev-immunol-042718-041841
[11]  Baudouin, C., Kolko, M., Melik-Parsadaniantz, S. and Messmer, E.M. (2021) Inflammation in Glaucoma: From the Back to the Front of the Eye, and Beyond. Progress in Retinal and Eye Research, 83, Article ID: 100916.
https://doi.org/10.1016/j.preteyeres.2020.100916
[12]  Sharon, G., Sampson, T.R., Geschwind, D.H. and Mazmanian, S.K. (2016) The Central Nervous System and the Gut Microbiome. Cell, 167, 915-932.
https://doi.org/10.1016/j.cell.2016.10.027
[13]  Gong, H., Zhang, S., Li, Q., Zuo, C., Gao, X., Zheng, B., et al. (2020) Gut Microbiota Compositional Profile and Serum Metabolic Phenotype in Patients with Primary Open-Angle Glaucoma. Experimental Eye Research, 191, Article ID: 107921.
https://doi.org/10.1016/j.exer.2020.107921
[14]  Zhang, Y., Zhou, X. and Lu, Y. (2022) Gut Microbiota and Derived Metabolomic Profiling in Glaucoma with Progressive Neurodegeneration. Frontiers in Cellular and Infection Microbiology, 12, Article 968992.
https://doi.org/10.3389/fcimb.2022.968992
[15]  Chen, H., Cho, K., Vu, T.H.K., Shen, C., Kaur, M., Chen, G., et al. (2018) Commensal Microflora-Induced T Cell Responses Mediate Progressive Neurodegeneration in Glaucoma. Nature Communications, 9, Article No. 3209.
https://doi.org/10.1038/s41467-018-05681-9
[16]  Chen, J., Chen, D.F. and Cho, K. (2023) The Role of Gut Microbiota in Glaucoma Progression and Other Retinal Diseases. The American Journal of Pathology, 193, 1662-1668.
https://doi.org/10.1016/j.ajpath.2023.06.015
[17]  Zeng, J., Liu, H., Liu, X. and Ding, C. (2015) The Relationship between Helicobacter pylori Infection and Open-Angle Glaucoma: A Meta-Analysis. Investigative Opthalmology & Visual Science, 56, 5238-5245.
https://doi.org/10.1167/iovs.15-17059
[18]  Kurtz, S., Regenbogen, M., Goldiner, I., Horowitz, N. and Moshkowitz, M. (2008) No Association between Helicobacter Pylori Infection or CagA-Bearing Strains and Glaucoma. Journal of Glaucoma, 17, 223-226.
https://doi.org/10.1097/ijg.0b013e31815a34ac
[19]  Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163.
https://doi.org/10.1002/sim.3034
[20]  Burgess, S., Small, D.S. and Thompson, S.G. (2015) A Review of Instrumental Variable Estimators for Mendelian Randomization. Statistical Methods in Medical Research, 26, 2333-2355.
https://doi.org/10.1177/0962280215597579
[21]  Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665.
https://doi.org/10.1002/gepi.21758
[22]  Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22.
https://doi.org/10.1093/ije/dyg070
[23]  Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., et al. (2018) The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife, 7, e34408.
https://doi.org/10.7554/elife.34408
[24]  Swerdlow, D.I., Kuchenbaecker, K.B., Shah, S., Sofat, R., Holmes, M.V., White, J., et al. (2016) Selecting Instruments for Mendelian Randomization in the Wake of Genome-Wide Association Studies. International Journal of Epidemiology, 45, 1600-1616.
https://doi.org/10.1093/ije/dyw088
[25]  Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., et al. (2021) Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nature Genetics, 53, 156-165.
https://doi.org/10.1038/s41588-020-00763-1
[26]  Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson, K., Donner, K.M., et al. (2023) Finngen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature, 613, 508-518.
https://doi.org/10.1038/s41586-022-05473-8
[27]  Skrivankova, V.W., Richmond, R.C., Woolf, B.A.R., Yarmolinsky, J., Davies, N.M., Swanson, S.A., et al. (2021) Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA, 326, 1614-1621.
https://doi.org/10.1001/jama.2021.18236
[28]  Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511.
https://doi.org/10.1093/ije/dyv071
[29]  Song, J., Wu, Y., Yin, X., Ma, H. and Zhang, J. (2023) The Causal Links between Gut Microbiota and COVID‐19: A Mendelian Randomization Study. Journal of Medical Virology, 95, e28784.
https://doi.org/10.1002/jmv.28784
[30]  Li, S., Chen, M., Zhang, Q., Fang, M., Xiong, W. and Bai, L. (2023) Ankylosing Spondylitis and Glaucoma in European Population: A Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1120742.
https://doi.org/10.3389/fimmu.2023.1120742
[31]  Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764.
https://doi.org/10.1093/ije/dyr036
[32]  Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698.
https://doi.org/10.1038/s41588-018-0099-7
[33]  Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998.
https://doi.org/10.1093/ije/dyx102
[34]  Hemani, G., Bowden, J. and Davey Smith, G. (2018) Evaluating the Potential Role of Pleiotropy in Mendelian Randomization Studies. Human Molecular Genetics, 27, R195-R208.
https://doi.org/10.1093/hmg/ddy163
[35]  Bowden, J. and Holmes, M.V. (2019) Meta-Analysis Andmendelianrandomization: A Review. Research Synthesis Methods, 10, 486-496.
https://doi.org/10.1002/jrsm.1346
[36]  Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[37]  Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389.
https://doi.org/10.1007/s10654-017-0255-x
[38]  Bowden, J., Del Greco M, F., Minelli, C., Zhao, Q., Lawlor, D.A., Sheehan, N.A., et al. (2018) Improving the Accuracy of Two-Sample Summary-Data Mendelian Randomization: Moving Beyond the NOME Assumption. International Journal of Epidemiology, 48, 728-742.
https://doi.org/10.1093/ije/dyy258
[39]  Emdin, C.A., Khera, A.V. and Kathiresan, S. (2017) Mendelian Randomization. JAMA, 318, 1925-1926.
https://doi.org/10.1001/jama.2017.17219
[40]  Fea, A.M., Ricardi, F., Novarese, C., Cimorosi, F., Vallino, V. and Boscia, G. (2023) Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State. International Journal of Molecular Sciences, 24, Article 2814.
https://doi.org/10.3390/ijms24032814
[41]  Fan, D. (2017) Holistic Integrative Medicine: Toward a New Era of Medical Advancement. Frontiers of Medicine, 11, 152-159.
https://doi.org/10.1007/s11684-017-0499-6
[42]  Liu, K., Zou, J., Fan, H., Hu, H. and You, Z. (2022) Causal Effects of Gut Microbiota on Diabetic Retinopathy: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 930318.
https://doi.org/10.3389/fimmu.2022.930318
[43]  Collins, D.W., Gudiseva, H.V., Trachtman, B., et al. (2016) Association of Primary Open-Angle Glaucoma with Mitochondrial Variants and Haplogroups Common in African Americans. Molecular Vision, 22, 454-471.
[44]  Floyd, J.L. and Grant, M.B. (2020) The Gut-Eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 9, 499-513.
https://doi.org/10.1007/s40123-020-00278-2
[45]  Brandscheid, C., Schuck, F., Reinhardt, S., Schäfer, K., Pietrzik, C.U., Grimm, M., et al. (2017) Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. Journal of Alzheimers Disease, 56, 775-788.
https://doi.org/10.3233/jad-160926
[46]  Ma, J., Hong, Y., Zheng, N., Xie, G., Lyu, Y., Gu, Y., et al. (2020) Gut Microbiota Remodeling Reverses Aging-Associated Inflammation and Dysregulation of Systemic Bile Acid Homeostasis in Mice Sex-Specifically. Gut Microbes, 11, 1450-1474.
https://doi.org/10.1080/19490976.2020.1763770
[47]  Jin, C., Zeng, Z., Fu, Z. and Jin, Y. (2016) Oral Imazalil Exposure Induces Gut Microbiota Dysbiosis and Colonic Inflammation in Mice. Chemosphere, 160, 349-358.
https://doi.org/10.1016/j.chemosphere.2016.06.105
[48]  Li, Z., Lu, G., Li, Z., Wu, B., Luo, E., Qiu, X., et al. (2021) Altered Actinobacteria and Firmicutes Phylum Associated Epitopes in Patients with Parkinson’s Disease. Frontiers in Immunology, 12, Article 632482.
https://doi.org/10.3389/fimmu.2021.632482
[49]  Biswas, L., Ibrahim, K.S., Li, X., Zhou, X., Zeng, Z., Craft, J., et al. (2021) Effect of a TSPO Ligand on Retinal Pigment Epithelial Cholesterol Homeostasis in High-Fat Fed Mice, Implication for Age-Related Macular Degeneration. Experimental Eye Research, 208, Article ID: 108625.
https://doi.org/10.1016/j.exer.2021.108625
[50]  Liu, Y., Li, T., Alim, A., Ren, D., Zhao, Y. and Yang, X. (2019) Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4+ T Cell Distribution Abnormality in High-Fat Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 67, 11665-11674.
https://doi.org/10.1021/acs.jafc.9b04731
[51]  Bou Ghanem, G.O., Wareham, L.K. and Calkins, D.J. (2024) Addressing Neurodegeneration in Glaucoma: Mechanisms, Challenges, and Treatments. Progress in Retinal and Eye Research, 100, Article ID: 101261.
https://doi.org/10.1016/j.preteyeres.2024.101261
[52]  Gramlich, O.W., Beck, S., von Thun und Hohenstein-Blaul, N., Boehm, N., Ziegler, A., Vetter, J.M., et al. (2013) Enhanced Insight into the Autoimmune Component of Glaucoma: Igg Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina. PLOS ONE, 8, e57557.
https://doi.org/10.1371/journal.pone.0057557
[53]  Hwang, I.K., Yoo, K., Li, H., Park, O.K., Lee, C.H., Choi, J.H., et al. (2009) Indole-3-Propionic Acid Attenuates Neuronal Damage and Oxidative Stress in the Ischemic Hippocampus. Journal of Neuroscience Research, 87, 2126-2137.
https://doi.org/10.1002/jnr.22030
[54]  Kim, C., Jung, S., Hwang, G. and Shin, D. (2023) Gut Microbiota Indole-3-Propionic Acid Mediates Neuroprotective Effect of Probiotic Consumption in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial and in Vitro Study. Clinical Nutrition, 42, 1025-1033.
https://doi.org/10.1016/j.clnu.2023.04.001
[55]  Vajaranant, T.S., Nayak, S., Wilensky, J.T. and Joslin, C.E. (2010) Gender and Glaucoma: What We Know and What We Need to Know. Current Opinion in Ophthalmology, 21, 91-99.
https://doi.org/10.1097/icu.0b013e3283360b7e

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133