|
基于TCN-SMHA-LSTM-TPA混合神经网络的复杂地层盾构土仓压力预测新方法
|
Abstract:
文章针对传统方法在复杂地层盾构掘进过程中关于土仓压力超前预测精度不高的问题,提出了一种融合时间卷积神经网络(TCN)、多头稀疏自注意力(SMHA)、长短时记忆网络(LSTM)和时间感知注意力(TPA)的混合神经网络模型,用于精准预测复杂地层盾构施工中的土仓压力。TCN模块通过多层卷积捕捉时间序列的局部特征,而多头稀疏自注意力机制进一步增强了模型对长距离依赖关系的建模能力,LSTM层则专注于捕获时间序列的长期依赖信息,TPA模块自适应地调整注意力权重,从而提高预测精度。该模型在盾构施工中的应用表明,其在复杂地质条件下对盾构土仓压力的超前预测具有较高的准确性和适应性,有助于盾构施工的实时监控与决策。
To address the issue of low prediction accuracy in traditional methods for forecasting chamber pressure during shield tunneling in complex geological conditions, this article proposes a hybrid neural network model based on Temporal Convolutional Network, Sparse Multi-Head Attention, Long Short-Term Memory, and Temporal Pattern Attention. The model is designed for precise prediction of chamber pressure in shield construction. The TCN module captures local features of time series through multi-layer convolution, while the SMHA mechanism further strengthens the model’s ability to model long-range dependencies. The LSTM layer focuses on extracting long-term dependencies in time series, and the TPA module adaptively adjusts attention weights to improve prediction accuracy. The application of this model in shield tunneling demonstrates its high accuracy and adaptability in forecasting chamber pressure under complex geological conditions, contributing to real-time monitoring and decision-making in tunneling operations.
[1] | 王洪新, 傅德明. 土压平衡盾构掘进的数学物理模型及各参数间关系研究[J]. 土木工程学报, 2006, 39(9): 86-90. |
[2] | 李守巨, 屈福政, 曹丽娟, 等. 土压平衡盾构机密封舱压力控制实验研究[J]. 煤炭学报, 2011, 36(6): 934-937. |
[3] | Yu, H., Mooney, M. and Bezuijen, A. (2020) A Simplified Excavation Chamber Pressure Model for EPBM Tunneling. Tunnelling and Underground Space Technology, 103, Article 103457. https://doi.org/10.1016/j.tust.2020.103457 |
[4] | 沈翔, 袁大军, 吴俊, 等. 复杂地层条件下盾构掘进参数分析及预测[J]. 现代隧道技术, 2020, 57(5): 160-166. |
[5] | Ahangari, K., Moeinossadat, S.R. and Behnia, D. (2015) Estimation of Tunnelling-Induced Settlement by Modern Intelligent Methods. Soils and Foundations, 55, 737-748. https://doi.org/10.1016/j.sandf.2015.06.006 |
[6] | 吴惠明, 常佳奇, 李刚, 等. 基于支持向量机的盾构掘进姿态预测与施工参数优化方法[J]. 隧道建设(中英文), 2021, 41(S1): 11-18. |
[7] | Zhou, J., Shi, X., Du, K., Qiu, X., Li, X. and Mitri, H.S. (2017) Feasibility of Random-Forest Approach for Prediction of Ground Settlements Induced by the Construction of a Shield-Driven Tunnel. International Journal of Geomechanics, 17, Article 817. https://doi.org/10.1061/(asce)gm.1943-5622.0000817 |
[8] | 林春金, 杨晓达, 龚英杰, 等. 基于PSO-BP的土压盾构土仓压力预测模型及掘进参数敏感性分析[J]. 应用基础与工程科学学报, 2021, 29(5): 1220-1233. |
[9] | 吴贤国, 刘俊, 陈虹宇, 等. 盾构掘进系统的数字孪生构架体系研究[J]. 土木建筑工程信息技术, 2023, 15(4): 105-110. |
[10] | 邱道宏, 傅康, 薛翊国, 等. 深埋隧道TBM掘进参数LSTM时序预测模型及应用研究[J]. 中南大学学报(自然科学版), 2021, 52(8): 2646-2660. |
[11] | 肖浩汉, 陈祖煜, 徐国鑫, 等. 基于GRU算法的盾构掘进参数预测——以成都地铁19号线为例[J]. 长江科学院院报, 2023, 40(1): 123-131. |
[12] | 高昆, 于思淏, 许维青, 等. 基于Attention-ResNet-LSTM混合神经网络的盾构掘进速度预测新方法[J]. 隧道建设(中英文), 2023, 43(4): 592-601. |
[13] | 黄鸿宇. 土压平衡盾构机土仓压力影响规律与预测优化研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2023. |
[14] | 宋曙光. 渗流作用下复合地层盾构隧道施工开挖面稳定性及控制研究[D]: [博士学位论文]. 济南: 山东大学, 2016. |
[15] | Lu, P., Yuan, D., Chen, J., Jin, D., Wu, J. and Luo, W. (2021) Face Stability Analysis of Slurry Shield Tunnels in Rock-Soil Interface Mixed Ground. KSCE Journal of Civil Engineering, 25, 2250-2260. https://doi.org/10.1007/s12205-021-1254-8 |