|
Mine Engineering 2024
SCCO2-ESGR中二氧化碳–页岩储层相互作用研究进展
|
Abstract:
随着勘探开发技术攻关,我国成功实现了对四川盆地为主海相页岩气资源的有效开发。超临界二氧化碳强化开采页岩气技术的提出,为进一步提高页岩气藏采收率提供了技术方案,且加快了我国“双碳”目标的实现。本文介绍了二氧化碳的基础参数,并从二氧化碳吸附、二氧化碳与矿物成分相互作用的认识着手,进一步阐述了二氧化碳作用下对页岩储层物性的影响。随着对二氧化碳技术的认识加深,超临界二氧化碳强化开采页岩气技术有望成为支持我国能源转型的关键技术。
With the breakthrough in exploration and development technology, China has successfully achieved effective development of marine shale gas resources, mainly in the Sichuan Basin. The proposal of supercritical carbon dioxide (SCCO2) enhanced shale gas recovery technology not only provides a technical solution for further improving the recovery rate of shale gas reservoirs but also accelerates the achievement of China’s “dual-carbon” goals. This paper introduces the basic parameters of carbon dioxide, and starts from the understanding of carbon dioxide adsorption and the interaction between carbon dioxide and mineral components, further elaborating on the impact of carbon dioxide on the physical properties of shale reservoirs. With the deepening understanding of carbon dioxide technology, the supercritical carbon dioxide enhanced shale gas recovery technology is expected to become a key technology to support China’s energy transformation.
[1] | 罗佐县. 美国页岩气勘探开发现状及其影响[J]. 中外能源, 2012, 17(1): 23-28. |
[2] | 皮光林. 美国页岩油气产业现状及工程技术演进趋势[J]. 当代石油石化, 2023, 31(5): 6-9. |
[3] | 周军平. CO2强化页岩气开采与地质封存的可行性分析[C]//第二届全国特殊气藏开发技术研讨会优秀论文集. 2013: 107-116. |
[4] | 杨国栋, 黄冕, 刘思雨, 等. 超临界CO2强化页岩气开采技术研究现状及展望[J]. 现代化工, 2024, 44(3): 16-20. |
[5] | 刘思哲, 周进, 王亮, 等. 超临界CO2强化开采页岩气技术研究进展[J]. 化学工程师, 2021, 35(9): 52-56. |
[6] | 刘松泽, 魏建光, 周晓峰, 等. 超临界CO2在页岩气开发中的应用研究进展[J]. 现代化工, 2020, 40(5): 28-31. |
[7] | 韩青, 郭红光, 张金龙, 等. 超临界CO2在非常规油气藏开采中的应用研究进展[J]. 现代化工, 2018, 38(1): 49-52, 54. |
[8] | 何潇宁, 何璇, 贾潇, 等. 二氧化碳开发非常规能源研究进展[J]. 现代化工, 2022, 42(5): 40-44. |
[9] | Rani, S., Padmanabhan, E. and Prusty, B.K. (2019) Review of Gas Adsorption in Shales for Enhanced Methane Recovery and CO2 Storage. Journal of Petroleum Science and Engineering, 175, 634-643. https://doi.org/10.1016/j.petrol.2018.12.081 |
[10] | 孙宝江, 张彦龙, 杜庆杰, 等. CO2在页岩中的吸附解吸性能评价[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 95-99, 106. |
[11] | 李文华, 房晓红, 李彬, 等. 蒙脱石吸附CH4和CO2的分子模拟[J]. 东北石油大学学报, 2014, 38(3): 25-30. |
[12] | 朱阳升, 宋学行, 郭印同, 等. 四川盆地龙马溪组页岩的CH4和CO2气体高压吸附特征及控制因素[J]. 天然气地球科学, 2016, 27(10): 1942-1952. |
[13] | Zhou, J., Liu, M., Xian, X., Jiang, Y., Liu, Q. and Wang, X. (2019) Measurements and Modelling of CH4 and CO2 Adsorption Behaviors on Shales: Implication for CO2 Enhanced Shale Gas Recovery. Fuel, 251, 293-306. https://doi.org/10.1016/j.fuel.2019.04.041 |
[14] | Řimnáčová, D., Weishauptová, Z., Přibyl, O., Sýkorová, I. and René, M. (2020) Effect of Shale Properties on CH4 and CO2 Sorption Capacity in Czech Silurian Shales. Journal of Natural Gas Science and Engineering, 80, Article ID: 103377. https://doi.org/10.1016/j.jngse.2020.103377 |
[15] | 陈立伟, 边乐, 王东杰, 等. 水分对CH4和CO2在煤中竞争吸附特性影响研究[J]. 煤炭科学技术, 2024, 52(4): 243-254. |
[16] | 王晓琦, 翟增强, 金旭, 等. 地层条件下页岩有机质孔隙内CO2与CH4竞争吸附的分子模拟[J]. 石油勘探与开发, 2016, 43(5): 772-779. |
[17] | 张烈辉, 张涛, 赵玉龙, 等. 二氧化碳-水-岩作用机理及微观模拟方法研究进展[J]. 石油勘探与开发, 2024, 51(1): 199-211. |
[18] | Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Culp, J.T. and Goodman, A. (2020) Quantifying Pore Scale and Matrix Interactions of SCCO2 with the Marcellus Shale. Fuel, 266, Article ID: 116928. https://doi.org/10.1016/j.fuel.2019.116928 |
[19] | Dai, X., Wang, M., Wei, C., Zhang, J., Wang, X. and Zou, M. (2020) Factors Affecting Shale Microscopic Pore Structure Variation during Interaction with Supercritical CO2. Journal of CO2 Utilization, 38, 194-211. https://doi.org/10.1016/j.jcou.2020.01.021 |
[20] | Wei, B., Zhang, X., Liu, J., Xu, X., Pu, W. and Bai, M. (2020) Adsorptive Behaviors of Supercritical CO2 in Tight Porous Media and Triggered Chemical Reactions with Rock Minerals during CO2-EOR and-sequestration. Chemical Engineering Journal, 381, Article ID: 122577. https://doi.org/10.1016/j.cej.2019.122577 |
[21] | Zhou, J., Yang, K., Tian, S., Zhou, L., Xian, X., Jiang, Y., et al. (2020) CO2-WATER-shale Interaction Induced Shale Microstructural Alteration. Fuel, 263, Article ID: 116642. https://doi.org/10.1016/j.fuel.2019.116642 |
[22] | Memon, S., Feng, R., Ali, M., Bhatti, M.A., Giwelli, A., Keshavarz, A., et al. (2022) Supercritical CO2-Shale Interaction Induced Natural Fracture Closure: Implications for SCCO2 Hydraulic Fracturing in Shales. Fuel, 313, Article ID: 122682. https://doi.org/10.1016/j.fuel.2021.122682 |
[23] | Qin, C., Jiang, Y., Zhou, J., Song, X., Liu, Z., Li, D., et al. (2021) Effect of Supercritical CO2 Extraction on CO2/CH4 Competitive Adsorption in Yanchang Shale. Chemical Engineering Journal, 412, Article ID: 128701. https://doi.org/10.1016/j.cej.2021.128701 |
[24] | Qin, C., Jiang, Y., Luo, Y., Zhou, J., Liu, H., Song, X., et al. (2020) Effect of Supercritical CO2 Saturation Pressures and Temperatures on the Methane Adsorption Behaviours of Longmaxi Shale. Energy, 206, Article ID: 118150. https://doi.org/10.1016/j.energy.2020.118150 |
[25] | Tian, S., Zhou, J., Xian, X., Gan, Q., Zhang, C., Dong, Z., et al. (2023) The Impact of Supercritical CO2 Exposure Time on the Effective Stress Law for Permeability in Shale. Energy, 284, Article ID: 129334. https://doi.org/10.1016/j.energy.2023.129334 |
[26] | Zhou, J., Tian, S., Zhou, L., Xian, X., Yang, K., Jiang, Y., et al. (2020) Experimental Investigation on the Influence of Sub-and Super-Critical CO2 Saturation Time on the Permeability of Fractured Shale. Energy, 191, Article ID: 116574. https://doi.org/10.1016/j.energy.2019.116574 |
[27] | Yin, H., Zhou, J., Jiang, Y., Xian, X. and Liu, Q. (2016) Physical and Structural Changes in Shale Associated with Supercritical CO2 Exposure. Fuel, 184, 289-303. https://doi.org/10.1016/j.fuel.2016.07.028 |