全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄土高塬沟壑区水–碳–粮协同优化的植被恢复机理
Synergistic Optimization Process of Water-Carbon-Food and Its Vegetation Restoration Mechanism in the Loess Plateau Gully Area

DOI: 10.12677/sd.2024.1410279, PP. 2460-2468

Keywords: 景观生态,黄土高塬沟壑区,生态服务协同,植被恢复,社会–生态因素互馈
Landscape Ecology
, Loess Plateau Gully Area, Ecological Service Synergy, Vegetation Restoration, Feedback of Socio-Ecological Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

生态服务协同格局形成是半干旱区脆弱生态系统恢复的重要特征。黄土高塬沟壑区植被恢复和生态功能变化均存在明显分异过程,从社会–生态视角探索植被恢复对生态服务协同潜力的驱动机理与路径,对半干旱区生态恢复建设与生态服务可持续供应具有指导意义。以塬面–沟谷系统整体为研究对象,在不同时空尺度上开展水–碳–粮协同过程研究,阐明协同格局形成的植被恢复响应过程及社会–生态因素作用机理,通过构建水–碳–粮协同格局形成的机制模型,厘清植被恢复的社会–生态要素互馈机制,揭示基于生态服务协同原理的植被恢复设计对塬面–沟谷系统水–碳–粮协同供给的潜在影响。研究在统筹调控塬面–沟谷系统关键社会–生态过程对植被恢复功能演化的作用机制和对可持续发展目标贡献方面具有科学支持作用。
The formation of synergistic patterns of ecosystem services is an important feature of the restoration of vulnerable ecosystems in semi-arid areas. There is a clear differentiation process in vegetation restoration and ecological function changes in the Loess Plateau gully region. Exploring the driving mechanisms and pathways of vegetation restoration on the potential for ecosystem service synergy from a socio-ecological perspective has guiding significance for ecological restoration construction and sustainable supply of ecosystem services in semi-arid areas. Taking the plateau-gully system as the research object, this study conducts research on the synergistic processes of water, carbon, and grain at different spatiotemporal scales, clarifies the vegetation restoration response process and the mechanism of action of socio-ecological factors in the formation of synergistic patterns, and by constructing a mechanism model for the formation of water-carbon-grain synergistic patterns, it clarifies the mutual feedback mechanism of socio-ecological factors in vegetation restoration, revealing the potential impact of vegetation restoration design based on the principle of ecosystem service synergy on the synergistic supply of water, carbon, and grain in the plateau-gully system. The research provides scientific support for the coordinated regulation of key socio-ecological processes in the plateau-gully system on the functional evolution of vegetation restoration and its contribution to sustainable development goals.

References

[1]  傅伯杰. 黄土高原土地利用变化的生态环境效应[J]. 科学通报, 2022, 67(32): 3768-3779.
[2]  Salzman, J., Bennett, G., Carroll, N., Goldstein, A. and Jenkins, M. (2018) The Global Status and Trends of Payments for Ecosystem Services. Nature Sustainability, 1, 136-144.
https://doi.org/10.1038/s41893-018-0033-0
[3]  Green, J.K. and Keenan, T.F. (2022) The Limits of Forest Carbon Sequestration. Science, 376, 692-693.
https://doi.org/10.1126/science.abo6547
[4]  Fu, B., Wu, X., Wang, Z., Wu, X. and Wang, S. (2022) Coupling Human and Natural Systems for Sustainability: Experience from China’s Loess Plateau. Earth System Dynamics, 13, 795-808.
https://doi.org/10.5194/esd-13-795-2022
[5]  Steffen, W., Richardson, K., Rockström, J., Schellnhuber, H.J., Dube, O.P., Dutreuil, S., et al. (2020) The Emergence and Evolution of Earth System Science. Nature Reviews Earth & Environment, 1, 54-63.
https://doi.org/10.1038/s43017-019-0005-6
[6]  朴世龙, 岳超, 丁金枝, 郭正堂. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学: 地球科学, 2022, 52(7): 1419-1426.
[7]  O’Neill, D.W., Fanning, A.L., Lamb, W.F. and Steinberger, J.K. (2018) A Good Life for All within Planetary Boundaries. Nature Sustainability, 1, 88-95.
https://doi.org/10.1038/s41893-018-0021-4
[8]  Li, C., Fu, B., Wang, S., Stringer, L.C., Zhou, W., Ren, Z., et al. (2023) Climate-Driven Ecological Thresholds in China’s Drylands Modulated by Grazing. Nature Sustainability, 6, 1363-1372.
https://doi.org/10.1038/s41893-023-01187-5
[9]  Bryan, B.A., Gao, L., Ye, Y., Sun, X., Connor, J.D., Crossman, N.D., et al. (2018) China’s Response to a National Land-System Sustainability Emergency. Nature, 559, 193-204.
https://doi.org/10.1038/s41586-018-0280-2
[10]  Kou, P., Xu, Q., Jin, Z., Yunus, A.P., Luo, X. and Liu, M. (2021) Complex Anthropogenic Interaction on Vegetation Greening in the Chinese Loess Plateau. Science of the Total Environment, 778, Article ID: 146065.
https://doi.org/10.1016/j.scitotenv.2021.146065
[11]  Luo, Y., Lü, Y., Fu, B., Zhang, Q., Li, T., Hu, W., et al. (2019) Half Century Change of Interactions among Ecosystem Services Driven by Ecological Restoration: Quantification and Policy Implications at a Watershed Scale in the Chinese Loess Plateau. Science of the Total Environment, 651, 2546-2557.
https://doi.org/10.1016/j.scitotenv.2018.10.116
[12]  Su, C. and Fu, B. (2013) Evolution of Ecosystem Services in the Chinese Loess Plateau under Climatic and Land Use Changes. Global and Planetary Change, 101, 119-128.
https://doi.org/10.1016/j.gloplacha.2012.12.014
[13]  Zhao, M., A, G., Zhang, J., Velicogna, I., Liang, C. and Li, Z. (2020) Ecological Restoration Impact on Total Terrestrial Water Storage. Nature Sustainability, 4, 56-62.
https://doi.org/10.1038/s41893-020-00600-7
[14]  Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., et al. (2016) Revegetation in China’s Loess Plateau Is Approaching Sustainable Water Resource Limits. Nature Climate Change, 6, 1019-1022.
https://doi.org/10.1038/nclimate3092
[15]  肖霞, 左洪超, 刘辉志, 符淙斌, 黄建平, 胡隐樵. 春末黄土高原半干旱区地表能量闭合的观测研究[J]. 冰川冻土, 2010, 32(1): 70-77.
[16]  黄季焜, 侯玲玲, 亢楠楠, 刘会芳, 吕欣欣, 张岩, 仇焕广, 龚亚珍, 南志标. 草地生态服务价值评估研究[J]. 中国工程科学, 2023, 2: 1-9.
[17]  Rode, J. (2021) When Payments for Ecosystem Conservation Stop. Nature Sustainability, 5, 15-16.
https://doi.org/10.1038/s41893-021-00812-5
[18]  Ouyang, Z., Song, C., Zheng, H., Polasky, S., Xiao, Y., Bateman, I.J., et al. (2020) Using Gross Ecosystem Product (GEP) to Value Nature in Decision Making. Proceedings of the National Academy of Sciences, 117, 14593-14601.
https://doi.org/10.1073/pnas.1911439117
[19]  谢高地, 张彩霞, 张雷明, 陈文辉, 李士美. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243-1254.
[20]  Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997) The Value of the World’s Ecosystem Services and Natural Capital. Nature, 387, 253-260.
https://doi.org/10.1038/387253a0
[21]  Fang, J., Yu, G., Liu, L., Hu, S. and Chapin, F.S. (2018) Climate Change, Human Impacts, and Carbon Sequestration in China. Proceedings of the National Academy of Sciences, 115, 4015-4020.
https://doi.org/10.1073/pnas.1700304115
[22]  赵文武, 侯焱臻, 刘焱序. 人地系统耦合与可持续发展: 框架与进展[J]. 科技导报, 2020, 38(13): 25-31.
[23]  De Groot, R., Costanza, R., Braat, L., Brander, L., Burkhard, B., Carrascosa, J.L., Crossman, N., et al. (2018) Ecosystem Services Are Nature’s Contributions to People: Response to Assessing Nature’s Contributions to People. Science Progress, 359, 111.
[24]  Dudley, N., Bhagwat, S.A., Harris, J., Maginnis, S., Moreno, J.G., Mueller, G.M., et al. (2018) Measuring Progress in Status of Land under Forest Landscape Restoration Using Abiotic and Biotic Indicators. Restoration Ecology, 26, 5-12.
https://doi.org/10.1111/rec.12632
[25]  Budakoti, S., Chauhan, T., Murtugudde, R., Karmakar, S. and Ghosh, S. (2021) Feedback from Vegetation to Interannual Variations of Indian Summer Monsoon Rainfall. Water Resources Research, 57, e2020WR028750.
https://doi.org/10.1029/2020wr028750
[26]  Bonotto, G., Peterson, T.J., Fowler, K. and Western, A.W. (2022) Identifying Causal Interactions between Groundwater and Streamflow Using Convergent Cross‐Mapping. Water Resources Research, 58, e2021WR030231.
https://doi.org/10.1029/2021wr030231
[27]  Arif, S. and MacNeil, M.A. (2022) Applying the Structural Causal Model Framework for Observational Causal Inference in Ecology. Ecological Monographs, 93, e1554.
https://doi.org/10.1002/ecm.1554
[28]  Fu, B., Zhang, J., Wang, S. and Zhao, W. (2020) Classification-Coordination-Collaboration: A Systems Approach for Advancing Sustainable Development Goals. National Science Review, 7, 838-840.
https://doi.org/10.1093/nsr/nwaa048
[29]  李新, 苏建宾. 走向数据善治: 以地球科学数据治理为例[J]. 科学通报, 2024, 69(9): 1149-1155.
[30]  于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清. 生态系统科学研究与生态系统管理[J]. 地理学报, 2020, 75(12): 2620-2635.
[31]  Lin, J., Bryan, B.A., Zhou, X., Lin, P., Do, H.X., Gao, L., et al. (2023) Making China’s Water Data Accessible, Usable and Shareable. Nature Water, 1, 328-335.
https://doi.org/10.1038/s44221-023-00039-y
[32]  Meacham, M., Norström, A.V., Peterson, G.D., Andersson, E., Bennett, E.M., Biggs, R., et al. (2022) Advancing Research on Ecosystem Service Bundles for Comparative Assessments and Synthesis. Ecosystems and People, 18, 99-111.
https://doi.org/10.1080/26395916.2022.2032356
[33]  彭建, 吕丹娜, 董建权, 刘焱序, 刘前媛, 李冰. 过程耦合与空间集成: 国土空间生态修复的景观生态学认知[J]. 自然资源学报, 2020, 35(1): 3-13.
[34]  Benayas, J.M.R., Newton, A.C., Diaz, A. and Bullock, J.M. (2009) Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-Analysis. Science, 325, 1121-1124.
https://doi.org/10.1126/science.1172460
[35]  傅伯杰, 刘彦随, 曹智, 王壮壮, 武旭同. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 2023, 38(8): 1110-1117.
[36]  Messerli, P., Kim, E.M., Lutz, W., Moatti, J., Richardson, K., Saidam, M., et al. (2019) Expansion of Sustainability Science Needed for the SDGS. Nature Sustainability, 2, 892-894.
https://doi.org/10.1038/s41893-019-0394-z
[37]  Yu, Z., Dong, Y., Lu, C., Agathokleous, E., Zhang, L., Liu, S., et al. (2023) China’s Forestation on Marginal Land Was Less Efficient in Carbon Sequestration Compared with Non-Marginal Land. One Earth, 6, 1692-1702.
https://doi.org/10.1016/j.oneear.2023.11.006
[38]  李双成. 如何科学衡量自然对人类的贡献: 一个基于生态系统服务的社会-生态系统分析框架及其应用[J]. 人民论坛‧学术前沿, 2020(11): 28-35.
[39]  Bastien-Olvera, B.A., Conte, M.N., Dong, X., Briceno, T., Batker, D., Emmerling, J., et al. (2023) Unequal Climate Impacts on Global Values of Natural Capital. Nature, 625, 722-727.
https://doi.org/10.1038/s41586-023-06769-z
[40]  刘晓洁, 贺思琪, 陈伟强, 闫丹, 刘立涛, 丁钢强, 张忠杰, 刘刚. 可持续发展目标视野下中国食物系统转型的战略思考[J]. 中国科学院院刊, 2023, 38(1): 112-122.
[41]  Mauri, A., Girardello, M., Forzieri, G., Manca, F., Beck, P.S.A., Cescatti, A., et al. (2023) Assisted Tree Migration Can Reduce but Not Avert the Decline of Forest Ecosystem Services in Europe. Global Environmental Change, 80, Article ID: 102676.
https://doi.org/10.1016/j.gloenvcha.2023.102676
[42]  van Vliet, J. (2019) Direct and Indirect Loss of Natural Area from Urban Expansion. Nature Sustainability, 2, 755-763.
https://doi.org/10.1038/s41893-019-0340-0
[43]  Bren d’Amour, C., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K., et al. (2016) Future Urban Land Expansion and Implications for Global Croplands. Proceedings of the National Academy of Sciences, 114, 8939-8944.
https://doi.org/10.1073/pnas.1606036114
[44]  Martini, G., Bracci, A., Riches, L., Jaiswal, S., Corea, M., Rivers, J., et al. (2022) Machine Learning Can Guide Food Security Efforts When Primary Data Are Not Available. Nature Food, 3, 716-728.
https://doi.org/10.1038/s43016-022-00587-8
[45]  穆兴民, 杜敏, 邵祎婷, 孙文义, 赵广举, 高鹏. 黄土高塬沟壑区土壤侵蚀特征分析[J]. 华北水利水电大学学报(自然科学版), 2023, 44(6): 96-102.
[46]  郭华东, 梁栋, 孙中昶, 陈方, 王心源, 李俊生, 朱丽, 边金虎, 魏延强, 黄磊, 陈玉, 彭代亮, 李晓松, 卢善龙, 刘洁, Zeeshan Shirazi. 地球大数据监测和评估可持续发展指标[J]. 科学通报: 英文版, 2022, 67(17): 1792-1801.
[47]  Liu, Y., Lü, Y., Fu, B. and Zhang, X. (2023) Landscape Pattern and Ecosystem Services Are Critical for Protected Areas’ Contributions to Sustainable Development Goals at Regional Scale. Science of the Total Environment, 881, Article ID: 163535.
https://doi.org/10.1016/j.scitotenv.2023.163535
[48]  Kubiszewski, I., Mulder, K., Jarvis, D. and Costanza, R. (2021) Toward Better Measurement of Sustainable Development and Wellbeing: A Small Number of SDG Indicators Reliably Predict Life Satisfaction. Sustainable Development, 30, 139-148.
https://doi.org/10.1002/sd.2234
[49]  Wu, X., Fu, B., Wang, S., Song, S., Lusseau, D., Liu, Y., et al. (2023) Bleak Prospects and Targeted Actions for Achieving the Sustainable Development Goals. Science Bulletin, 68, 2838-2848.
https://doi.org/10.1016/j.scib.2023.09.010
[50]  Cochran, F., Daniel, J., Jackson, L. and Neale, A. (2020) Earth Observation-Based Ecosystem Services Indicators for National and Subnational Reporting of the Sustainable Development Goals. Remote Sensing of Environment, 244, Article ID: 111796.
https://doi.org/10.1016/j.rse.2020.111796
[51]  Liang, Y., Hashimoto, S. and Liu, L. (2021) Integrated Assessment of Land-Use/Land-Cover Dynamics on Carbon Storage Services in the Loess Plateau of China from 1995 to 2050. Ecological Indicators, 120, Article ID: 106939.
https://doi.org/10.1016/j.ecolind.2020.106939
[52]  Crist, E., Ripple, W.J., Ehrlich, P.R., Rees, W.E. and Wolf, C. (2022) Scientists’ Warning on Population. Science of the Total Environment, 845, Article ID: 157166.
https://doi.org/10.1016/j.scitotenv.2022.157166
[53]  Wang, D., Liang, Y., Liu, L., Huang, J. and Yin, Z. (2023) Crop Production on the Chinese Loess Plateau under 1.5 and 2.0 ˚C Global Warming Scenarios. Science of the Total Environment, 903, Article ID: 166158.
https://doi.org/10.1016/j.scitotenv.2023.166158
[54]  Sun, L., Chen, J., Li, Q. and Huang, D. (2020) Dramatic Uneven Urbanization of Large Cities throughout the World in Recent Decades. Nature Communications, 11, Article No. 5366.
https://doi.org/10.1038/s41467-020-19158-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133