全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cryopreserved Fibroblast and Mesenchymal Stem Cells (MSCs) Being Alternative Mitochondrial Donors for Mitochondrial Organelle Transplantation (MOT)

DOI: 10.4236/jbnb.2024.154005, PP. 65-77

Keywords: Mitochondria, Mitochondrial Organelle Transplantation, MOT, Cryopreservation, Fibroblasts, MSCs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, traumatic brain and spinal cord injuries, cerebral stroke, and neurodegenerative diseases. The earlier MOT results in better efficacy in animal models of urgent diseases such as ischemic stroke, and traumatic brain and spinal cord injuries. There is no long-term method to preserve mitochondria. Routine MOT procedure from cell growth to mitochondrial injection often takes serval weeks and is not satisfactory for urgent use cases. Hypothesis: Cryopreserved cells might be mitochondrial donors for MOT. Methods: We isolated mitochondria from cryopreserved human fibroblasts and mesenchymal stem cells (MSCs) in cell banks and compared the mitochondrial viability and transplantation with the mitochondria from fresh cells. Key findings: We found that mitochondria from fresh and cryopreserved cells are comparable in mitochondrial viability and transplantation. We also obtained data showing that mitochondria of fibroblasts and MSCs had similar membrane potential and transfer ability, but MSC’s mitochondria had higher ATP content than fibroblast’s mitochondria. In addition, oxygen consumption rates (OCRs) were higher in MSC’s mitochondria compared to fibroblast’s mitochondria and did not change between fresh and frozen cells. Conclusion: Cryopreserved fibroblasts and MSCs are alternative mitochondrial donors for MOT to fresh cells. MSCs could provide higher ATP-produced mitochondria than fibroblasts.

References

[1]  Murphy, E., Ardehali, H., Balaban, R.S., DiLisa, F., Dorn, G.W., Kitsis, R.N., et al. (2016) Mitochondrial Function, Biology, and Role in Disease. Circulation Research, 118, 1960-1991.
https://doi.org/10.1161/res.0000000000000104

[2]  Braymer, J.J. and Lill, R. (2017) Iron-Sulfur Cluster Biogenesis and Trafficking in Mitochondria. Journal of Biological Chemistry, 292, 12754-12763.
https://doi.org/10.1074/jbc.r117.787101

[3]  Herst, P.M., Rowe, M.R., Carson, G.M. and Berridge, M.V. (2017) Functional Mitochondria in Health and Disease. Frontiers in Endocrinology, 8, Article 296.
https://doi.org/10.3389/fendo.2017.00296

[4]  Smith, E.F., Shaw, P.J. and De Vos, K.J. (2019) The Role of Mitochondria in Amyotrophic Lateral Sclerosis. Neuroscience Letters, 710, Article 132933.
https://doi.org/10.1016/j.neulet.2017.06.052

[5]  Federico, A., Cardaioli, E., Da Pozzo, P., Formichi, P., Gallus, G.N. and Radi, E. (2012) Mitochondria, Oxidative Stress and Neurodegeneration. Journal of the Neurological Sciences, 322, 254-262.
https://doi.org/10.1016/j.jns.2012.05.030

[6]  Hubbard, W.B., Vekaria, H.J., Velmurugan, G.V., Kalimon, O.J., Prajapati, P., Brown, E., et al. (2023) Mitochondrial Dysfunction after Repeated Mild Blast Traumatic Brain Injury Is Attenuated by a Mild Mitochondrial Uncoupling Prodrug. Journal of Neurotrauma, 40, 2396-2409.
https://doi.org/10.1089/neu.2023.0102

[7]  Norat, P., Soldozy, S., Sokolowski, J.D., Gorick, C.M., Kumar, J.S., Chae, Y., et al. (2020) Mitochondrial Dysfunction in Neurological Disorders: Exploring Mitochondrial Transplantation. npj Regenerative Medicine, 5, Article No. 22.
https://doi.org/10.1038/s41536-020-00107-x

[8]  Masuzawa, A., Black, K.M., Pacak, C.A., Ericsson, M., Barnett, R.J., Drumm, C., et al. (2013) Transplantation of Autologously Derived Mitochondria Protects the Heart from Ischemia-Reperfusion Injury. American Journal of Physiology-Heart and Circulatory Physiology, 304, H966-H982.
https://doi.org/10.1152/ajpheart.00883.2012
[9]  Shi, X., Zhao, M., Fu, C. and Fu, A. (2017) Intravenous Administration of Mitochondria for Treating Experimental Parkinson’s Disease. Mitochondrion, 34, 91-100.
https://doi.org/10.1016/j.mito.2017.02.005

[10]  Huang, P., Kuo, C., Lee, H., Shen, C., Cheng, F., Wu, S., et al. (2016) Transferring Xenogenic Mitochondria Provides Neural Protection against Ischemic Stress in Ischemic Rat Brains. Cell Transplantation, 25, 913-927.
https://doi.org/10.3727/096368915x689785

[11]  Nakamura, Y., Lo, E.H. and Hayakawa, K. (2020) Placental Mitochondria Therapy for Cerebral Ischemia-Reperfusion Injury in Mice. Stroke, 51, 3142-3146.
https://doi.org/10.1161/strokeaha.120.030152

[12]  Gollihue, J.L., Patel, S.P., Eldahan, K.C., Cox, D.H., Donahue, R.R., Taylor, B.K., et al. (2018) Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. Journal of Neurotrauma, 35, 1800-1818.
https://doi.org/10.1089/neu.2017.5605

[13]  Lin, M., Fang, S., Hsu, J.C., Huang, C., Lee, P., Huang, C., et al. (2022) Mitochondrial Transplantation Attenuates Neural Damage and Improves Locomotor Function after Traumatic Spinal Cord Injury in Rats. Frontiers in Neuroscience, 16, Article 800883.
https://doi.org/10.3389/fnins.2022.800883

[14]  Zhao, J., Qu, D., Xi, Z., Huan, Y., Zhang, K., Yu, C., et al. (2021) Mitochondria Transplantation Protects Traumatic Brain Injury via Promoting Neuronal Survival and Astrocytic BDNF. Translational Research, 235, 102-114.
https://doi.org/10.1016/j.trsl.2021.03.017

[15]  Fairley, L.H., Grimm, A. and Eckert, A. (2022) Mitochondria Transfer in Brain Injury and Disease. Cells, 11, Article 3603.
https://doi.org/10.3390/cells11223603

[16]  Jiang, X., Baucom, C.C. and Elliott, R.L. (2020) Mitochondria Dynamically Transplant into Cells in Vitro and in Mice and Rescue Aerobic Respiration of Mitochondrial DNA-Depleted Motor Neuron NSC-34. Journal of Biomedical Science and Engineering, 13, 203-221.
https://doi.org/10.4236/jbise.2020.139019

[17]  Clemente-Suárez, V.J., Martín-Rodríguez, A., Yáñez-Sepúlveda, R. and Tornero-Aguilera, J.F. (2023) Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. International Journal of Molecular Sciences, 24, Article 8848.
https://doi.org/10.3390/ijms24108848

[18]  Yamada, Y., Ito, M., Arai, M., Hibino, M., Tsujioka, T. and Harashima, H. (2020) Challenges in Promoting Mitochondrial Transplantation Therapy. International Journal of Molecular Sciences, 21, Article 6365.
https://doi.org/10.3390/ijms21176365

[19]  Bender, E. (2016) Cell-Based Therapy: Cells on Trial. Nature, 540, S106-S108.
https://doi.org/10.1038/540s106a

[20]  Giovarelli, M., Serati, A., Zecchini, S., Guelfi, F., Clementi, E. and Mandò, C. (2023) Cryopreserved Placental Biopsies Maintain Mitochondrial Activity for High-Resolution Respirometry. Molecular Medicine, 29, Article No. 45.
https://doi.org/10.1186/s10020-023-00645-2

[21]  Kuznetsov, A.V., Kunz, W.S., Saks, V., Usson, Y., Mazat, J., Letellier, T., et al. (2003) Cryopreservation of Mitochondria and Mitochondrial Function in Cardiac and Skeletal Muscle Fibers. Analytical Biochemistry, 319, 296-303.
https://doi.org/10.1016/s0003-2697(03)00326-9

[22]  Bohrer, L.R., Stone, N.E., Mullin, N.K., Voigt, A.P., Anfinson, K.R., Fick, J.L., et al. (2023) Automating iPSC Generation to Enable Autologous Photoreceptor Cell Replacement Therapy. Journal of Translational Medicine, 21, Article No. 161.
https://doi.org/10.1186/s12967-023-03966-2

[23]  Elliott, R.L. and Jiang, X.P. (2020) Neurodegeneration and Mitochondria Organelle Transplantation: “A Technology That Proof of Principle Suggest Is Ready for Prime Time”. Neuroscience and Medicine, 11, 108-118.
https://doi.org/10.4236/nm.2020.114013

[24]  Denu, R.A., Nemcek, S., Bloom, D.D., Goodrich, A.D., Kim, J., Mosher, D.F., et al. (2016) Fibroblasts and Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable. Acta Haematologica, 136, 85-97.
https://doi.org/10.1159/000445096

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133