Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temperature and the Hubble constant. This allows us to predict the Hubble constant with much higher precision than before by using the CMB temperature. This is of great importance, since it will lead to much higher precision in various global parameters of the cosmos, such as the Hubble radius and the age of the universe. We have improved uncertainty in the Hubble constant all the way down to 66.8712 ± 0.0019 km/s/Mpc based on data from one of the most recent CMB studies. Previous studies based on other methods have rarely reported an uncertainty much less than approximately ±1 km/s/Mpc for the Hubble constant. Our deeper understanding of the CMB and its relation to
seems to be opening a new era of high-precision cosmology, which may well be the key to solving the Hubble tension, as alluded to herein. Naturally, our results should also be scrutinized by other researchers over time, but we believe that, even at this stage, this deeper understanding of the CMB deserves attention from the research community.
References
[1]
Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) The Basics of Flat Space Cosmology. InternationalJournalofAstronomyandAstrophysics, 5, 116-124. https://doi.org/10.4236/ijaa.2015.52015
[2]
Friedman, A. (1922) Über die Krümmung des Raumes. Zeitschrift für Physik, 10, 377-386. https://doi.org/10.1007/bf01332580
[3]
Einstein, A. (1916) Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354, 769-822. https://doi.org/10.1002/andp.19163540702
[4]
Haug, E.G. and Wojnow, S. (2023) How to Predict the Temperature of the CMB Directly Using the Hubble Parameter and the Planck Scale Using the Stefan-Boltzman Law. Research Square. https://doi.org/10.21203/rs.3.rs-3576675/v1
[5]
Haug, E.G. (2024) CMB, Hawking, Planck, and Hubble Scale Relations Consistent with Recent Quantization of General Relativity Theory. InternationalJournalofTheoreticalPhysics, 63, Article No. 57. https://doi.org/10.1007/s10773-024-05570-6
[6]
Melia, F. and Shevchuk, A.S.H. (2011) The Universe. MonthlyNoticesoftheRoyalAstronomicalSociety, 419, 2579-2586. https://doi.org/10.1111/j.1365-2966.2011.19906.x
[7]
Melia, F. (2013) The Universe without Inflation. Astronomy & Astrophysics, 553, A76. https://doi.org/10.1051/0004-6361/201220447
[8]
Melia, F. (2016) The Linear Growth of Structure in the Universe. Monthly NoticesoftheRoyalAstronomicalSociety, 464, 1966-1976. https://doi.org/10.1093/mnras/stw2493
[9]
Tatum, E.T. and Seshavatharam, U.V.S. (2018) How a Realistic Linear Model of Cosmology Could Present the Illusion of Late Cosmic Acceleration. Journal of ModernPhysics, 9, 1397-1403. https://doi.org/10.4236/jmp.2018.97084
[10]
John, M.V. (2019) and the Eternal Coasting Cosmological Model. MonthlyNoticesoftheRoyalAstronomicalSociety: Letters, 484, L35-L37. https://doi.org/10.1093/mnrasl/sly243
[11]
John, M.V. and Joseph, K.B. (2000) Generalized Chen-Wu Type Cosmological Model. PhysicalReviewD, 61, Article ID: 087304. https://doi.org/10.1103/physrevd.61.087304
[12]
Stuckey, W.M. (1994) The Observable Universe Inside a Black Hole. American JournalofPhysics, 62, 788-795. https://doi.org/10.1119/1.17460
[13]
Popławski, N. (2016) Universe in a Black Hole in Einstein-Cartan Gravity. The AstrophysicalJournal, 832, Article No. 96. https://doi.org/10.3847/0004-637x/832/2/96
[14]
Tatum, E.T. (2020) A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose. In: Tatum, E., Eds., New Ideas Concerning Black Holes and the Universe, IntechOpen, 5-21. https://doi.org/10.5772/intechopen.87019
[15]
Akhavan, O. (2022) The Universe Creation by Electron Quantum Black Holes. Acta Scientific Applied Physics, 2, 34-45. https://actascientific.com/ASAP/pdf/ASAP-02-0046.pdf
[16]
Lineweaver, C.H. and Patel, V.M. (2023) All Objects and Some Questions. AmericanJournalofPhysics, 91, 819-825. https://doi.org/10.1119/5.0150209
[17]
Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie der Wissenschaften. https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up
[18]
Tatum, E.T. (2024) Upsilon Constants and Their Usefulness in Planck Scale Quantum Cosmology. JournalofModernPhysics, 15, 167-173. https://doi.org/10.4236/jmp.2024.152007
[19]
Lemaître, G. (1927) Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, A47, 49-59. https://adsabs.harvard.edu/full/1927ASSB...47...49L
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., et al. (2017) A Gravitational-Wave Standard Siren Measurement of the Hubble Constant. Nature, 551, 85-88. https://doi.org/10.1038/nature24471
[22]
Hotokezaka, K., Nakar, E., Gottlieb, O., Nissanke, S., Masuda, K., Hallinan, G., et al. (2019) A Hubble Constant Measurement from Superluminal Motion of the Jet in Gw170817. NatureAstronomy, 3, 940-944. https://doi.org/10.1038/s41550-019-0820-1
[23]
Freedman, W.L., Madore, B.F., Hatt, D., Hoyt, T.J., Jang, I.S., Beaton, R.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. TheAstrophysicalJournal, 882, Article No. 34. https://doi.org/10.3847/1538-4357/ab2f73
[24]
Gayathri, V., Healy, J., Lange, J., O’Brien, B., Szczepanczyk, M., Bartos, I., et al. (2021) Measuring the Hubble Constant with GW190521 as an Eccentric Black Hole Merger and Its Potential Electromagnetic Counterpart. The Astrophysical Journal Letters, 908, L34. https://doi.org/10.3847/2041-8213/abe388
[25]
Sedgwick, T.M., Collins, C.A., Baldry, I.K. and James, P.A. (2020) The Effects of Peculiar Velocities in SN Ia Environments on the Local H0 Measurement. MonthlyNoticesoftheRoyalAstronomicalSociety, 500, 3728-3742. https://doi.org/10.1093/mnras/staa3456
[26]
Riess, A.G., Yuan, W., Macri, L.M., Scolnic, D., Brout, D., Casertano, S., et al. (2022) A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 Km S−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. TheAstrophysicalJournalLetters, 934, L7. https://doi.org/10.3847/2041-8213/ac5c5b
[27]
Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., et al. (2021) In the Realm of the Hubble Tension—A Review of Solutions. ClassicalandQuantumGravity, 38, Article ID: 153001. https://doi.org/10.1088/1361-6382/ac086d
[28]
Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., et al. (2021) Planck 2018 Results. Astronomy&Astrophysics, 652, C4. https://doi.org/10.1051/0004-6361/201833910e
[29]
Kelly, P.L., Rodney, S., Treu, T., Oguri, M., Chen, W., Zitrin, A., et al. (2023) Constraints on the Hubble Constant from Supernova Refsdal’s Reappearance. Science, 380, eabh1322. https://doi.org/10.1126/science.abh1322
[30]
Balkenhol, L., Dutcher, D., Spurio Mancini, A., Doussot, A., Benabed, K., Galli, S., et al. (2023) Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT, TE, and EE Dataset. Physical Review D, 108, Article ID: 023510. https://doi.org/10.1103/physrevd.108.023510
[31]
Dhal, S., Singh, S., Konar, K. and Paul, R.K. (2023) Calculation of Cosmic Microwave Background Radiation Parameters Using COBE/FIRAS Dataset. Experimental Astronomy, 56, 715-726. https://doi.org/10.1007/s10686-023-09904-w
[32]
Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C. and López, S. (2011) The Evolution of the Cosmic Microwave Background Temperature. Astronomy&Astrophysics, 526, L7. https://doi.org/10.1051/0004-6361/201016140
[33]
Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. TheAstrophysicalJournal, 707, 916-920. https://doi.org/10.1088/0004-637x/707/2/916
[34]
Fixsen, D.J., Kogut, A., Levin, S., Limon, M., Lubin, P., Mirel, P., et al. (2004) The Temperature of the Cosmic Microwave Background at 10 GHZ. The Astrophysical Journal, 612, 86-95. https://doi.org/10.1086/421993
[35]
Krishnan, C., Mohayaee, R., Colgáin, E.Ó., Sheikh-Jabbari, M.M. and Yin, L. (2021) Does Hubble Tension Signal a Breakdown in FLRW Cosmology? ClassicalandQuantumGravity, 38, Article ID: 184001. https://doi.org/10.1088/1361-6382/ac1a81
[36]
Capozziello, S., Benetti, M. and Spallicci, A.D.A.M. (2020) Addressing the Cosmological H0 Tension by the Heisenberg Uncertainty. Foundations of Physics, 50, 893-899. https://doi.org//10.1007/s10701-020-00356-2
[37]
Haug, E.G. and Tatum, E.T. (2024) Solving the Hubble Tension Using the Union2 Supernova Database. https://doi.org/10.20944/preprints202404.0421.v1
[38]
Haug, E.G. and Tatum, E.T. (2024) Planck Length from Cosmological Redshifts Solves the Hubble Tension. https://hal.science/hal-04520966/document
[39]
Tatum, E.T. and Haug, E.G. (2024) Extracting a Cosmic Age of 14.6 Billion Years from all 580 Type IA Supernova Redshifts in the Union2 Database. https://doi.org/10.13140/RG.2.2.28246.87360
[40]
Haug, E.G. and Tatum, E.T. (2024) How a Thermodynamic Version of the Friedmann Equation Appears to Solve the Early Galaxy Formation Problem. https://doi.org/10.20944/preprints202404.0159.v1