全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于光热有机小分子的太阳能界面蒸发技术研究进展
Research Progress of Solar Interface Evaporation Technology Based on Photothermal Organic Small Molecules

DOI: 10.12677/amc.2024.124018, PP. 133-148

Keywords: 光热界面蒸发,有机小分子,光热转化,净水,水电联产
Solar-Driven Interfacial Evaporation
, Organic Small Molecules, Photothermal Conversion, Water Purification, Water-Electricity Cogeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机小分子光热材料具有结构可控、性质易调、功能多样等优势,近年来被开发用于光热界面水蒸发领域。鉴于此,本文综述了有机小分子材料在光热界面蒸发领域的研究进展。基于有机小分子光热转化增强策略,介绍了适合于该体系的分子结构特征。基于有机小分子可构建膜基、泡沫基、水凝胶基蒸发系统,对上述三类蒸发系统进行了分析和讨论。接着概述了蒸发系统在海水淡化、污水处理、水电联产等领域的应用。最后,对当前发展进行总结并提出所面临的挑战,以期为有机小分子基界面蒸发系统的设计和开发提供参考和借鉴。
The photothermal organic small molecules have advantages such as controllable structure, easily tunable properties, and diverse functionalities. In recent years, they have been developed for applications in the field of solar-driven interface evaporation. Therefore, this paper reviews the research progress of organic small molecules based on photothermal interface evaporation systems. The molecular structure characteristics suitable for this system based on the enhanced photothermal conversion mechanism are introduced. Furthermore, three types of evaporation systems constructed using organic small molecules including membrane-based, foam-based, and hydrogel-based systems are analyzed. These systems are further discussed in terms of their potential applications in seawater desalination, wastewater treatment, and water-electricity cogeneration. Finally, the review concludes by summarizing the current developments and highlighting the challenges that must be addressed, which aims to provide references and insights for the design and development of organic small molecule-based interface evaporation systems.

References

[1]  Mekonnen, M.M. and Hoekstra, A.Y. (2016) Four Billion People Facing Severe Water Scarcity. Science Advances, 2, e1500323.
https://doi.org/10.1126/sciadv.1500323
[2]  Schiermeier, Q. (2013) Water Risk as World Warms. Nature, 505, 10-11.
https://doi.org/10.1038/505010a
[3]  Tao, P., Ni, G., Song, C., Shang, W., Wu, J., Zhu, J., et al. (2018) Solar-Driven Interfacial Evaporation. Nature Energy, 3, 1031-1041.
https://doi.org/10.1038/s41560-018-0260-7
[4]  Zhang, P., Wang, H., Wang, J., Ji, Z. and Qu, L. (2023) Boosting the Viable Water Harvesting in Solar Vapor Generation: From Interfacial Engineering to Devices Design. Advanced Materials, 36, Article ID: 2303976.
https://doi.org/10.1002/adma.202303976
[5]  Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., et al. (2016) Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Science Advances, 2, e1501227.
https://doi.org/10.1126/sciadv.1501227
[6]  Gao, C., Li, Y., Lan, L., Wang, Q., Zhou, B., Chen, Y., et al. (2023) Bioinspired Asymmetric Polypyrrole Membranes with Enhanced Photothermal Conversion for Highly Efficient Solar Evaporation. Advanced Science, 11, Article ID: 2306833.
https://doi.org/10.1002/advs.202306833
[7]  Shao, C., Zhao, Y. and Qu, L. (2020) Tunable Graphene Systems for Water Desalination. ChemNanoMat, 6, 1028-1048.
https://doi.org/10.1002/cnma.202000041
[8]  Zhao, Z., Chen, C., Wu, W., Wang, F., Du, L., Zhang, X., et al. (2019) Highly Efficient Photothermal Nanoagent Achieved by Harvesting Energy via Excited-State Intramolecular Motion within Nanoparticles. Nature Communications, 10, Article No. 768.
https://doi.org/10.1038/s41467-019-08722-z
[9]  Ge, J., Hong, L., Ma, H., Ye, Q., Chen, Y., Xie, L., et al. (2022) Asymmetric Substitution of End-Groups Triggers 16.34% Efficiency for All-Small-Molecule Organic Solar Cells. Advanced Materials, 34, Article ID: 2202752.
https://doi.org/10.1002/adma.202202752
[10]  Guo, B., Li, M., Hao, G., Wei, L., Sa, H., Chen, J., et al. (2024) A Ratiometric Fluorescent Probe for Imaging the Fluctuation of Hobr during Endoplasmic Reticulum Stress. Journal of Materials Chemistry B, 12, 1001-1006.
https://doi.org/10.1039/d3tb02679e
[11]  Chen, G., Sun, J., Peng, Q., Sun, Q., Wang, G., Cai, Y., et al. (2020) Biradical-Featured Stable Organic-Small-Molecule Photothermal Materials for Highly Efficient Solar-Driven Water Evaporation. Advanced Materials, 32, Article ID: 1908537.
https://doi.org/10.1002/adma.201908537
[12]  Weng, X. and Liu, J. (2021) Strategies for Maximizing Photothermal Conversion Efficiency Based on Organic Dyes. Drug Discovery Today, 26, 2045-2052.
https://doi.org/10.1016/j.drudis.2021.03.009
[13]  Zhang, Y., Yan, H., Wang, X., Zhang, Z., Liu, F., Tu, S., et al. (2022) Highly Efficient Solar-Absorber Composite Material Based on Tetrapyridylporphyrin for Water Evaporation and Thermoelectric Power Generation. RSC Advances, 12, 28997-29002.
https://doi.org/10.1039/d2ra03512j
[14]  Han, X., Wang, Z., Shen, M., Liu, J., Lei, Y., Li, Z., et al. (2021) A Highly Efficient Organic Solar Energy-Absorbing Material Based on Phthalocyanine Derivative for Integrated Water Evaporation and Thermoelectric Power Generation Application. Journal of Materials Chemistry A, 9, 24452-24459.
https://doi.org/10.1039/d1ta07519e
[15]  Li, J., Wang, L., Zhang, C., Wang, H., Pan, Y., Li, S., et al. (2024) Manipulation of the Self-Assembly Morphology by Side-Chain Engineering of Quinoxaline-Substituted Organic Photothermal Molecules for Highly Efficient Solar-Thermal Conversion and Applications. Angewandte Chemie International Edition, 63, e202402726.
https://doi.org/10.1002/anie.202402726
[16]  Cui, Y., Liu, J., Li, Z., Ji, M., Zhao, M., Shen, M., et al. (2021) Donor-Acceptor-Type Organic-Small-Molecule-Based Solar-Energy-Absorbing Material for Highly Efficient Water Evaporation and Thermoelectric Power Generation. Advanced Functional Materials, 31, Article ID: 2106247.
https://doi.org/10.1002/adfm.202106247
[17]  Prakoso, S.P., Sun, S., Saleh, R., Tao, Y. and Wang, C. (2021) Tailoring Photophysical Properties of Diketopyrrolopyrrole Small Molecules with Electron-Withdrawing Moieties for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 13, 38365-38374.
https://doi.org/10.1021/acsami.1c10665
[18]  Liu, J., Cui, Y., Pan, Y., Chen, Z., Jia, T., Li, C., et al. (2022) Donor-Acceptor Molecule Based High-Performance Photothermal Organic Material for Efficient Water Purification and Electricity Generation. Angewandte Chemie International Edition, 61, e202117087.
https://doi.org/10.1002/anie.202117087
[19]  Huang, J., Wang, Z., Zhu, W. and Li, Y. (2023) Solution-Processed D-A-π-A-D Radicals for Highly Efficient Photothermal Conversion. Aggregate, 5, e426.
https://doi.org/10.1002/agt2.426
[20]  Wang, Z., Zhou, J., Zhang, Y., Zhu, W. and Li, Y. (2022) Accessing Highly Efficient Photothermal Conversion with Stable Open-Shell Aromatic Nitric Acid Radicals. Angewandte Chemie International Edition, 61, e202113653.
https://doi.org/10.1002/anie.202113653
[21]  Zhu, J., Wang, X., Liang, J., Qiu, X., Chen, S., Wang, Y., et al. (2023) Broadband Solar-Driven Water Evaporator Based on Organic Hybrid Bandgap and Bio-Mimetic Interfaces. EcoMat, 5, e12323.
https://doi.org/10.1002/eom2.12323
[22]  Li, H., Wen, H., Zhang, Z., Song, N., Kwok, R.T.K., Lam, J.W.Y., et al. (2020) Reverse Thinking of the Aggregation-Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers. Angewandte Chemie International Edition, 59, 20371-20375.
https://doi.org/10.1002/anie.202008292
[23]  Zhao, Q., Huang, Z., Wan, Y., Tan, J., Cao, C., Li, S., et al. (2021) Multifunctional Oligomer Sponge for Efficient Solar Water Purification and Oil Cleanup. Journal of Materials Chemistry A, 9, 2104-2110.
https://doi.org/10.1039/d0ta10798k
[24]  Li, H., Zhu, W., Li, M., Li, Y., Kwok, R.T.K., Lam, J.W.Y., et al. (2021) Side Area-Assisted 3D Evaporator with Antibiofouling Function for Ultra-Efficient Solar Steam Generation. Advanced Materials, 33, Article ID: 2102258.
https://doi.org/10.1002/adma.202102258
[25]  Zhao, F., Zhou, X., Shi, Y., Qian, X., Alexander, M., Zhao, X., et al. (2018) Highly Efficient Solar Vapour Generation via Hierarchically Nanostructured Gels. Nature Nanotechnology, 13, 489-495.
https://doi.org/10.1038/s41565-018-0097-z
[26]  Zhou, X., Guo, Y., Zhao, F. and Yu, G. (2019) Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research, 52, 3244-3253.
https://doi.org/10.1021/acs.accounts.9b00455
[27]  Shao, C., Guo, B., Lu, B., Yu, J., Kong, H., Wang, B., et al. (2023) PDI-Based Organic Small Molecule Regulated by Inter/Intramolecular Interactions for Efficient Solar Vapor Generation. Small, 19, Article ID: 202305856.
https://doi.org/10.1002/smll.202305856
[28]  Qi, S., Yuan, L., Ao, S., Wang, L., Jia, T. and Dou, C. (2024) A Salt-Resistant Solar Evaporator with Organic Diradicaloids as Photothermal Materials for Efficient and Persistent Desalination. Journal of Materials Chemistry A, 12, 6663-6670.
https://doi.org/10.1039/d3ta08075g
[29]  Li, H., Li, H., Zou, L., Li, Q., Chen, P., Quan, X., et al. (2023) Vertically Π-Extended Strong Acceptor Unit Boosting Near-Infrared Photothermal Conversion of Conjugated Polymers toward Highly Efficient Solar-Driven Water Evaporation. Journal of Materials Chemistry A, 11, 2933-2946.
https://doi.org/10.1039/d2ta07628d
[30]  Dai, J., Qi, S., Zhao, M., Liu, J., Jia, T., Liu, G., et al. (2023) Donor-acceptor Molecule with TICT Character: A New Design Strategy for Organic Photothermal Material in Solar Energy. Chemical Engineering Journal, 471, Article ID: 144745.
https://doi.org/10.1016/j.cej.2023.144745
[31]  Shen, M., Zhao, X., Han, L., Jin, N., Liu, S., Jia, T., et al. (2022) Developing Flexible Quinacridone-Derivatives-Based Photothermal Evaporaters for Solar Steam and Thermoelectric Power Generation. ChemistryA European Journal, 28, e202104137.
https://doi.org/10.1002/chem.202104137
[32]  Zhao, M., Zhu, Y., Pan, Y., Wang, Y., Xu, T., Zhao, X., et al. (2022) High-Performance Organic Photothermal Material Based on Fusion of the Donor-Acceptor Structure for Water Evaporation and Thermoelectric Power Generation. ACS Applied Energy Materials, 5, 15758-15767.
https://doi.org/10.1021/acsaem.2c03332

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133