全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于尺度混合偏正态分布的考试成绩分析
Statistical Analysis for Exam Scores via Scale Mixture of Skew-Normal Distributions

DOI: 10.12677/sa.2024.135166, PP. 1677-1689

Keywords: 尺度混合偏正态分布,ECMC算法,偏态回归模型,考试成绩分析
Scale Mixture of Skew-Normal Distribution
, ECMC Algorithm, Regression Model with Skew Errors, Analysis of Exam Scores

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对考试成绩分布多峰、有偏的特点,提出采用有限混合–尺度混合偏正态分布进行统计分析。通过模拟和实证分析,对比了多个潜在混合分布,证实所提方法的有效性。文章进一步采用有限混合–尺度混合偏正态误差回归模型对影响考试成绩的因素进行探讨,并与正态误差回归模型进行对比,证实混合偏正态误差回归模型在对考试成绩评价中的优势。
This article proposes the use of finite mixture-scale mixture of skew-normal distributions for statistical analysis of exam scores that exhibit multiple peaks and skewness. Through simulation and empirical studies, multiple potential mixture distributions are compared to demonstrate the effectiveness of the proposed method. Furthermore, a linear regression model with a finite mixture-scale mixture of skew-normal error is used to investigate the factors influencing exam scores, and is compared with a normal error regression model, confirming the advantages of the mixture of skew-normal error regression model in evaluating exam performance.

References

[1]  马成有. 对学生成绩“正态分布”现象的看法[J]. 现代交际, 2013(2): 256.
[2]  岳武陵. 对考试结果要用正态分布评价的思考[J]. 科技咨询导报, 2007(22): 226-227.
[3]  喻晓莉. 学生成绩偏离正态分布的原因分析[J]. 重庆科技学院学报, 2006(S1): 106.
[4]  尹向飞. 基于混合正态分布的大学生考试成绩分布的拟合[J]. 统计与决策, 2007(8): 133-135.
[5]  张军舰, 马岱君. 考试成绩的混合正态分布分析[J]. 数理统计与管理, 2021, 40(5): 815-821.
[6]  张国才. 学生学习成绩负偏态分布的合理性[J]. 江苏高教, 2002(2): 74-76.
[7]  李翔, 冯珉, 丁澍, 缪柏其. 考试成绩分布函数特点研究[J]. 中国科学技术大学学报, 2011, 41(6): 531-534.
[8]  李金屏, 黄艺美, 刘蓓等. 一个通用的学生考试成绩分布的数学模型研究[J]. 数学的实践与认识, 2009, 39(11): 88-97.
[9]  彭长生. 大学课程考试成绩影响因素的实证分析——一个本科阶段《计量经济学》的教学案例[J]. 安庆师范学院学报(社会科学版), 2010, 29(12): 75-78.
[10]  沈家豪, 关颖, 欧春泉, 等. 基于结构方程模型的医学硕士研究生课程考试成绩影响因素分析[J]. 中国卫生统计, 2022, 39(5): 695-698.
[11]  喻铁朔, 李霞, 甘琤. 基于学生成绩回归预测的多模型适用性对比研究[J]. 中国教育信息化, 2020(17): 23-28.
[12]  张莉, 卢星凝, 陆从林, 王邦军, 李凡长. 支持向量机在高考成绩预测分析中的应用[J]. 中国科学技术大学学报, 2017, 47(1): 1-9.
[13]  Canale, A., Pagui, E.C.K. and Scarpa, B. (2016) Bayesian Modeling of University First-Year Students’ Grades after Placement Test. Journal of Applied Statistics, 43, 3015-3029.
https://doi.org/10.1080/02664763.2016.1157144
[14]  Mclachlan, G. and Peel, D. (2000) Finite Mixture Models. Wiley.
https://doi.org/10.1002/0471721182
[15]  Fruithwirth-Schnater, S. and Pyne, S. (2010) Bayesian Inference for Finite Mixtures of Univariate and Multivariate Skew-Normal and Skew-t Distributions. Biostatistics, 11, 317-336.
https://doi.org/10.1093/biostatistics/kxp062
[16]  Basso, R.M., Lachos, V.H., Cabral, C.R.B. and Ghosh, P. (2010) Robust Mixture Modeling Based on Scale Mixtures of Skew-Normal Distributions. Computational Statistics and Data Analysis, 54, 2926-2941.
https://doi.org/10.1016/j.csda.2009.09.031
[17]  Prates, M.O., Cabral, C.R.B. and Lachos, V.H. (2013) Mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions. Journal of Statistical Software, 54, 1-20.
https://doi.org/10.18637/jss.v054.i12
[18]  Lachos, V.H., Ghosh, P. and Arellano-Valle, R.B. (2010) Likelihood Based Inference for Skew-Normal Independent Linear Mixed Models. Statistica Sinica, 20, 303-322.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133