全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geographical Distribution of Arboviruses, Aedes aegypti and Aedes albopictus Vectors and Their Resistance to Insecticides in Africa: A Systematic Review

DOI: 10.4236/ae.2024.124019, PP. 249-274

Keywords: Aedes, Arbovirus, Insecticide Resistance, Molecular and Metabolic Mechanisms, Africa

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background & Objectives: Epidemics of arboviruses such as Dengue, Chikungunya and Zika have been recorded in recent years indicating that Aedes aegypti and Aedes albopictus are both important and very active vectors in Africa. For vector control, insecticides are on the front line, unfortunately, reported resistance jeopardizes the effectiveness of this strategy. The objective of this review was to determine the geographical distribution and insecticide resistance mechanisms of Ae. aegypti and Ae. Albopictus in Africa. Methods: A systematic review of the literature in scientific databases (PubMed, Google Scholar, ScienceDirect, Hinari) allowed us to identify relevant articles on the geographical distribution of Aedes aegypti, Aedes albopictus and arboviral diseases. On the other hand, studies related to insecticides used in vector control against Aedes, associated resistances and their molecular and metabolic mechanisms. Results: A total of 94 studies met the inclusion criteria for this search. Aedes aegypti is reported in most of Africa, and Aedes albopictus in part. There is a re-emergence and outbreak of Arbovirus epidemics in West and Central Africa. The insecticides used were organochlorines, carbamates, organophosphates and pyrethroids. In Aedes, target site insensitivity and metabolic resistance would be the 2 main mechanisms of resistance to these insecticides. Interpretation & Conclusion: Resistance has been recorded in all four major classes of insecticides recommended by WHO for vector control and eradication. New vector control methods such as the use of plant extracts with larvicidal and adulticidal activities, advanced modern biotechnology techniques, and nanobiotechnology need to be developed.

References

[1]  Wilson, A.L., Courtenay, O., Kelly-Hope, L.A., Scott, T.W., Takken, W., Torr, S.J., et al. (2020) The Importance of Vector Control for the Control and Elimination of Vector-Borne Diseases. PLOS Neglected Tropical Diseases, 14, e0007831.
https://doi.org/10.1371/journal.pntd.0007831
[2]  Weetman, D., Kamgang, B., Badolo, A., Moyes, C., Shearer, F., Coulibaly, M., et al. (2018) Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. International Journal of Environmental Research and Public Health, 15, Article No. 220.
https://doi.org/10.3390/ijerph15020220
[3]  Powell, J.R. (2018) Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? The American Journal of Tropical Medicine and Hygiene, 98, 1563-1565.
https://doi.org/10.4269/ajtmh.17-0866
[4]  Ouédraogo, W.M., Toé, K.H., Sombié, A., Viana, M., Bougouma, C., Sanon, A., et al. (2022) Impact of Physicochemical Parameters of Aedes aegypti Breeding Habitats on Mosquito Productivity and the Size of Emerged Adult Mosquitoes in Ouagadougou City, Burkina Faso. Parasites & Vectors, 15, Article No. 478.
https://doi.org/10.1186/s13071-022-05558-3
[5]  Gubler, D.J. (2001) Human Arbovirus Infections Worldwide. Annals of the New York Academy of Sciences, 951, 13-24.
https://doi.org/10.1111/j.1749-6632.2001.tb02681.x
[6]  Achee, N.L., Grieco, J.P., Vatandoost, H., Seixas, G., Pinto, J., Ching-NG, L., et al. (2019) Alternative Strategies for Mosquito-Borne Arbovirus Control. PLOS Neglected Tropical Diseases, 13, e0006822.
https://doi.org/10.1371/journal.pntd.0006822
[7]  Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., et al. (2013) The Global Distribution and Burden of Dengue. Nature, 496, 504-507.
https://doi.org/10.1038/nature12060
[8]  Malisheni, M., Khaiboullina, S.F., Rizvanov, A.A., Takah, N., Murewanhema, G. and Bates, M. (2017) Clinical Efficacy, Safety, and Immunogenicity of a Live Attenuated Tetravalent Dengue Vaccine (CYD-TDV) in Children: A Systematic Review with Meta-Analysis. Frontiers in Immunology, 8, Article No. 863.
https://doi.org/10.3389/fimmu.2017.00863
[9]  Stoler, J., al Dashti, R., Anto, F., Fobil, J.N. and Awandare, G.A. (2014) Deconstructing “Malaria”: West Africa as the Next Front for Dengue Fever Surveillance and Control. Acta Tropica, 134, 58-65.
https://doi.org/10.1016/j.actatropica.2014.02.017
[10]  WHO (2014) Yellow Fever.
[11]  Sarwar, M. (2016) Mosquito-Borne Viral Infections and Diseases among Persons and Interfering with the Vector Activities. International Journal of Vaccines & Vaccination, 3, Article No. 00063.
https://doi.org/10.15406/ijvv.2016.03.00063
[12]  CDC (2000) Dengue, Symptoms and Treatmen. JAMA, 283, 1951-1955.
[13]  Tuboi, S.H., Costa, Z.G.A., da Costa Vasconcelos, P.F. and Hatch, D. (2007) Clinical and Epidemiological Characteristics of Yellow Fever in Brazil: Analysis of Reported Cases 1998-2002. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 169-175.
https://doi.org/10.1016/j.trstmh.2006.04.001
[14]  Satterfield-Nash, A., Kotzky, K., Allen, J., Bertolli, J., Moore, C.A., Pereira, I.O., et al. (2017) Health and Development at Age 19-24 Months of 19 Children Who Were Born with Microcephaly and Laboratory Evidence of Congenital Zika Virus Infection during the 2015 Zika Virus Outbreak—Brazil, 2017. MMWR. Morbidity and Mortality Weekly Report, 66, 1347-1351.
https://doi.org/10.15585/mmwr.mm6649a2
[15]  Sornpeng, W., Pimsamarn, S. and Akksilp, S. (2009) Resistance to Temephos of Aedes aegypti Linnaeus Larvae (Diptera: Culicidae). Journal of Health Science, 18, 650-654.
[16]  Antson, A.A., Burns, J.E., Moroz, O.V., Scott, D.J., Sanders, C.M., Bronstein, I.B., et al. (2000) Structure of the Intact Transactivation Domain of the Human Papillomavirus E2 Protein. Nature, 403, 805-809.
https://doi.org/10.1038/35001638
[17]  Jirakanjanakit, N., Rongnoparut, P., Saengtharatip, S., Chareonviriyaphap, T., Duchon, S., Bellec, C., et al. (2007) Insecticide Susceptible/Resistance Status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. Journal of Economic Entomology, 100, 545-550.
https://doi.org/10.1093/jee/100.2.545
[18]  Matowo, N.S., Tanner, M., Munhenga, G., Mapua, S.A., Finda, M., Utzinger, J., et al. (2020) Patterns of Pesticide Usage in Agriculture in Rural Tanzania Call for Integrating Agricultural and Public Health Practices in Managing Insecticide-Resistance in Malaria Vectors. Malaria Journal, 19, Article No. 257.
https://doi.org/10.1186/s12936-020-03331-4
[19]  Koou, S., Chong, C., Vythilingam, I., Lee, C. and Ng, L. (2014) Insecticide Resistance and Its Underlying Mechanisms in Field Populations of Aedes aegypti Adults (Diptera: Culicidae) in Singapore. Parasites & Vectors, 7, Article No. 471.
https://doi.org/10.1186/s13071-014-0471-0
[20]  Moyes, C.L., Vontas, J., Martins, A.J., Ng, L.C., Koou, S.Y., Dusfour, I., et al. (2017) Contemporary Status of Insecticide Resistance in the Major Aedes Vectors of Arboviruses Infecting Humans. PLOS Neglected Tropical Diseases, 11, e0005625.
https://doi.org/10.1371/journal.pntd.0005625
[21]  Brown, J.E., McBride, C.S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., et al. (2011) Worldwide Patterns of Genetic Differentiation Imply Multiple ‘Domestications’ of Aedes aegypti, a Major Vector of Human Diseases. Proceedings of the Royal Society B: Biological Sciences, 278, 2446-2454.
https://doi.org/10.1098/rspb.2010.2469
[22]  Gratz, N.G. (2004) Critical Review of the Vector Status of Aedes albopictus. Medical and Veterinary Entomology, 18, 215-227.
https://doi.org/10.1111/j.0269-283x.2004.00513.x
[23]  Delatte, H., Gimonneau, G., Triboire, A. and Fontenille, D. (2009) Influence of Temperature on Immature Development, Survival, Longevity, Fecundity, and Gonotrophic Cycles of Aedes albopictus, Vector of Chikungunya and Dengue in the Indian Ocean. Journal of Medical Entomology, 46, 33-41.
https://doi.org/10.1603/033.046.0105
[24]  Bryant, J.E., Holmes, E.C. and Barrett, A.D.T. (2007) Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLOS Pathogens, 3, e75.
https://doi.org/10.1371/journal.ppat.0030075
[25]  Ross, R.W. (1956) The Newala Epidemic: III. The Virus: Isolation, Pathogenic Properties and Relationship to the Epidemic. Journal of Hygiene, 54, 177-191.
https://doi.org/10.1017/s0022172400044442
[26]  Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C. and de Lamballerie, X. (2014) Chikungunya in the Americas. The Lancet, 383, 514.
https://doi.org/10.1016/s0140-6736(14)60185-9
[27]  Dick, G.W.A., Kitchen, S.F. and Haddow, A.J. (1952) Zika Virus (I). Isolations and Serological Specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46, 509-520.
https://doi.org/10.1016/0035-9203(52)90042-4
[28]  Eltom, K., Enan, K., El Hussein, A.R.M. and Elkhidir, I.M. (2021) Dengue Virus Infection in Sub-Saharan Africa between 2010 and 2020: A Systematic Review and Meta-Analysis. Frontiers in Cellular and Infection Microbiology, 11, Article 678945.
https://doi.org/10.3389/fcimb.2021.678945
[29]  Ojo, M.M., Gbadamosi, B., Olukayode, A. and Oluwaseun, O.R. (2018) Sensitivity Analysis of Dengue Model with Saturated Incidence Rate. Open Access Library Journal, 5, e4413.
https://doi.org/10.4236/oalib.1104413
[30]  Hill, S.C., Vasconcelos, J., Neto, Z., Jandondo, D., Zé-Zé, L., Aguiar, R.S., et al. (2019) Emergence of the Asian Lineage of Zika Virus in Angola: An Outbreak Investigation. The Lancet Infectious Diseases, 19, 1138-1147.
https://doi.org/10.1016/s1473-3099(19)30293-2
[31]  Faye, O., de Lourdes Monteiro, M., Vrancken, B., Prot, M., Lequime, S., Diarra, M., et al. (2020) Genomic Epidemiology of 2015-2016 Zika Virus Outbreak in Cape Verde. Emerging Infectious Diseases, 26, 1084-1090.
https://doi.org/10.3201/eid2606.190928
[32]  Marchi, S., Viviani, S., Montomoli, E., Tang, Y., Boccuto, A., Vicenti, I., et al. (2020) Zika Virus in West Africa: A Seroepidemiological Study between 2007 and 2012. Viruses, 12, Article No. 641.
https://doi.org/10.3390/v12060641
[33]  Grard, G., Caron, M., Mombo, I.M., Nkoghe, D., Mboui Ondo, S., Jiolle, D., et al. (2014) Zika Virus in Gabon (Central Africa)-2007: A New Threat from Aedes albopictus? PLOS Neglected Tropical Diseases, 8, e2681.
https://doi.org/10.1371/journal.pntd.0002681
[34]  Alayu, M., Teshome, T., Amare, H., Kinde, S., Belay, D. and Assefa, Z. (2021) Risk Factors for Chikungunya Virus Outbreak in Somali Region of Ethiopia, 2019: Unmatched Case-Control Study. Advances in Virology, 2021, Article 8847906.
https://doi.org/10.1155/2021/8847906
[35]  Peyrefitte, C.N., Rousset, D., Pastorino, B.A.M., Pouillot, R., Bessaud, M., Tock, F., et al. (2007) Chikungunya Virus, Cameroon, 2006. Emerging Infectious Diseases, 13, 768-771.
https://doi.org/10.3201/eid1305.061500
[36]  Demanou, M., Antonio-Nkondjio, C., Ngapana, E., Rousset, D., Paupy, C., Manuguerra, J., et al. (2010) Chikungunya Outbreak in a Rural Area of Western Cameroon in 2006: A Retrospective Serological and Entomological Survey. BMC Research Notes, 3, Article No. 128.
https://doi.org/10.1186/1756-0500-3-128
[37]  Moyen, N., Thiberville, S., Pastorino, B., Nougairede, A., Thirion, L., Mombouli, J., et al. (2014) First Reported Chikungunya Fever Outbreak in the Republic of Congo, 2011. PLOS ONE, 9, e115938.
https://doi.org/10.1371/journal.pone.0115938
[38]  Vairo, F., Aimè Coussoud-Mavoungou, M., Ntoumi, F., Castilletti, C., Kitembo, L., Haider, N., et al. (2020) Chikungunya Outbreak in the Republic of the Congo, 2019—Epidemiological, Virological and Entomological Findings of a South-North Multidisciplinary Taskforce Investigation. Viruses, 12, Article No. 1020.
https://doi.org/10.3390/v12091020
[39]  Fourié, T., Dia, A., Savreux, Q., Pommier de Santi, V., de Lamballerie, X., Leparc-Goffart, I., et al. (2021) Emergence of Indian Lineage of ECSA Chikungunya Virus in Djibouti, 2019. International Journal of Infectious Diseases, 108, 198-201.
https://doi.org/10.1016/j.ijid.2021.03.090
[40]  Paupy, C., Le Goff, G., Brengues, C., Guerra, M., Revollo, J., Barja Simon, Z., et al. (2012) Genetic Structure and Phylogeography of Aedes aegypti, the Dengue and Yellow-Fever Mosquito Vector in Bolivia. Infection, Genetics and Evolution, 12, 1260-1269.
https://doi.org/10.1016/j.meegid.2012.04.012
[41]  Nkoghe, D., Kassa, R.F., Caron, M., Grard, G., Mombo, I., Bikié, B., et al. (2012) Clinical Forms of Chikungunya in Gabon, 2010. PLOS Neglected Tropical Diseases, 6, e1517.
https://doi.org/10.1371/journal.pntd.0001517
[42]  Konongoi, S.L., Nyunja, A., Ofula, V., Owaka, S., Koka, H., Koskei, E., et al. (2018) Human and Entomologic Investigations of Chikungunya Outbreak in Mandera, Northeastern Kenya, 2016. PLOS ONE, 13, e0205058.
https://doi.org/10.1371/journal.pone.0205058
[43]  Ansumana, R., Jacobsen, K.H., Leski, T.A., Covington, A.L., Bangura, U., Hodges, M.H., et al. (2013) Reemergence of Chikungunya Virus in Bo, Sierra Leone. Emerging Infectious Diseases, 19, 1108-1110.
https://doi.org/10.3201/eid1907.121563
[44]  Sow, A., Faye, O., Diallo, M., Diallo, D., Chen, R., Faye, O., et al. (2017) Chikungunya Outbreak in Kedougou, Southeastern Senegal in 2009-2010. Open Forum Infectious Diseases, 5, ofx259.
https://doi.org/10.1093/ofid/ofx259
[45]  Gould, L.H., Osman, M.S., Farnon, E.C., Griffith, K.S., Godsey, M.S., Karch, S., et al. (2008) An Outbreak of Yellow Fever with Concurrent Chikungunya Virus Transmission in South Kordofan, Sudan, 2005. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102, 1247-1254.
https://doi.org/10.1016/j.trstmh.2008.04.014
[46]  Parreira, R., Conceição, C., Centeno-Lima, S., Marques, N., Saraiva da Cunha, J., Abreu, C., et al. (2014) Angola’s 2013 Dengue Outbreak: Clinical, Laboratory and Molecular Analyses of Cases from Four Portuguese Institutions. The Journal of Infection in Developing Countries, 8, 1210-1215.
https://doi.org/10.3855/jidc.4910
[47]  Abreu, C., Silva-Pinto, A., Lazzara, D., Sobrinho-Simões, J., Guimarães, J.T. and Sarmento, A. (2016) Imported Dengue from 2013 Angola Outbreak: Not Just Serotype 1 Was Detected. Journal of Clinical Virology, 79, 77-79.
https://doi.org/10.1016/j.jcv.2016.04.011
[48]  Grobbelaar, A.A., Weyer, J., Moolla, N., Jansen van Vuren, P., Moises, F. and Paweska, J.T. (2016) Resurgence of Yellow Fever in Angola, 2015-2016. Emerging Infectious Diseases, 22, 1854-1855.
https://doi.org/10.3201/eid2210.160818
[49]  WHO (2019) Weekly Bulletin on Outbreaks and Other Emergencies.
[50]  Lim, J.K., Seydou, Y., Carabali, M., Barro, A., Dahourou, D.L., Lee, K.S., et al. (2019) Clinical and Epidemiologic Characteristics Associated with Dengue during and Outside the 2016 Outbreak Identified in Health Facility-Based Surveillance in Ouagadougou, Burkina Faso. PLOS Neglected Tropical Diseases, 13, e0007882.
https://doi.org/10.1371/journal.pntd.0007882
[51]  Im, J., Balasubramanian, R., Ouedraogo, M., Wandji Nana, L.R., Mogeni, O.D., Jeon, H.J., et al. (2020) The Epidemiology of Dengue Outbreaks in 2016 and 2017 in Ouagadougou, Burkina Faso. Heliyon, 6, e04389.
https://doi.org/10.1016/j.heliyon.2020.e04389
[52]  Suzuki, T., Kutsuna, S., Taniguchi, S., Tajima, S., Maeki, T., Kato, F., et al. (2017) Dengue Virus Exported from Côte D’Ivoire to Japan, June 2017. Emerging Infectious Diseases, 23, 1758-1760.
https://doi.org/10.3201/eid2310.171132
[53]  WHO (2018) Weekly Bulletin on Outbreaks and Other Emergencies.
[54]  Leroy, E.M., Nkoghe, D., Ollomo, B., Nze-Nkogue, C., Becquart, P., Grard, G., et al. (2009) Concurrent Chikungunya and Dengue Virus Infections during Simultaneous Outbreaks, Gabon, 2007. Emerging Infectious Diseases, 15, 591-593.
https://doi.org/10.3201/eid1504.080664
[55]  Obonyo, M., Fidhow, A. and Ofula, V. (2018) Investigation of Laboratory Confirmed Dengue Outbreak in North-Eastern Kenya, 2011. PLOS ONE, 13, e0198556.
https://doi.org/10.1371/journal.pone.0198556
[56]  Langat, S.K., Eyase, F.L., Berry, I.M., Nyunja, A., Bulimo, W., Owaka, S., et al. (2020) Origin and Evolution of Dengue Virus Type 2 Causing Outbreaks in Kenya: Evidence of Circulation of Two Cosmopolitan Genotype Lineages. Virus Evolution, 6, veaa026.
https://doi.org/10.1093/ve/veaa026
[57]  Massangaie, M., Pinto, G., Padama, F., Chambe, G., da Silva, M., Mate, I., et al. (2016) Clinical and Epidemiological Characterization of the First Recognized Outbreak of Dengue Virus-Type 2 in Mozambique, 2014. The American Society of Tropical Medicine and Hygiene, 94, 413-416.
https://doi.org/10.4269/ajtmh.15-0543
[58]  Sokhna, C., Goumballa, N. and Gautret, P. (2019) The Grand Magal of Touba in the Time of a Dengue Outbreak in Senegal. Travel Medicine and Infectious Disease, 28, 107-108.
https://doi.org/10.1016/j.tmaid.2018.11.002
[59]  Malik, A., Earhart, K., Mohareb, E., Saad, M., Saeed, M., Ageep, A., et al. (2011) Dengue Hemorrhagic Fever Outbreak in Children in Port Sudan. Journal of Infection and Public Health, 4, 1-6.
https://doi.org/10.1016/j.jiph.2010.08.001
[60]  Ahmed, A., Elduma, A., Magboul, B., Higazi, T. and Ali, Y. (2019) The First Outbreak of Dengue Fever in Greater Darfur, Western Sudan. Tropical Medicine and Infectious Disease, 4, Article No. 43.
https://doi.org/10.3390/tropicalmed4010043
[61]  WHO (2020) Weekly Bulletin on Outbreaks and Other Emergencies.
[62]  Kraemer, M.U.G., Faria, N.R., Reiner, R.C., Golding, N., Nikolay, B., Stasse, S., et al. (2017) Spread of Yellow Fever Virus Outbreak in Angola and the Democratic Republic of the Congo 2015-16: A Modelling Study. The Lancet Infectious Diseases, 17, 330-338.
https://doi.org/10.1016/s1473-3099(16)30513-8
[63]  Nemg, F.B.S., Abanda, N.N., Yonga, M.G., Ouapi, D., Samme, I.E., Djoumetio, M.D., et al. (2022) Sustained Circulation of Yellow Fever Virus in Cameroon: An Analysis of Laboratory Surveillance Data, 2010-2020. BMC Infectious Diseases, 22, Article No. 418.
https://doi.org/10.1186/s12879-022-07407-1
[64]  WHO (2011) Outbreak News Yellow Fever, Côte d’Ivoire.
[65]  Mengesha Tsegaye, M., Beyene, B., Ayele, W., Abebe, A., Tareke, I., Sall, A., et al. (2018) Sero-Prevalence of Yellow Fever and Related Flavi Viruses in Ethiopia: A Public Health Perspective. BMC Public Health, 18, Article No. 1011.
https://doi.org/10.1186/s12889-018-5726-9
[66]  WHO (2021) Yellow Fever-Ghana.
[67]  Nathan, N., Barry, M., Van Herp, M. and Zeller, H. (2001) Shortage of Vaccines during a Yellow Fever Outbreak in Guinea. The Lancet, 358, 2129-2130.
https://doi.org/10.1016/s0140-6736(01)07185-9
[68]  WHO (2006) Yellow Fever in Africa and Central and South America, 2008-2009. The Weekly Epidemiological Record, 81, 317-324.
[69]  WHO (2004) Outbreak News Yellow Fever, Liberia.
https://www.who.int/emergencies/disease-outbreak-news/item/2004_03_11-en
[70]  Ajogbasile, F.V., Oguzie, J.U., Oluniyi, P.E., Eromon, P.E., Uwanibe, J.N., Mehta, S.B., et al. (2020) Real-Time Metagenomic Analysis of Undiagnosed Fever Cases Unveils a Yellow Fever Outbreak in Edo State, Nigeria. Scientific Reports, 10, Article No. 3180.
https://doi.org/10.1038/s41598-020-59880-w
[71]  Diagne, M.M., Ndione, M.H.D., Gaye, A., Barry, M.A., Diallo, D., Diallo, A., et al. (2021) Yellow Fever Outbreak in Eastern Senegal, 2020-2021. Viruses, 13, Article 1475.
https://doi.org/10.3390/v13081475
[72]  WHO (2013) Yellow Fever in Africa and South America, 2011-2012. The Weekly Epidemiological Record, 88, 285-296.
[73]  Markoff, L. (2013) Yellow Fever Outbreak in Sudan. New England Journal of Medicine, 368, 689-691.
https://doi.org/10.1056/nejmp1300772
[74]  Soghaier, M.A., Hagar, A., Abbas, M.A., Elmangory, M.M., Eltahir, K.M. and Sall, A.A. (2013) Yellow Fever Outbreak in Darfur, Sudan in October 2012; The Initial Outbreak Investigation Report. Journal of Infection and Public Health, 6, 370-376.
https://doi.org/10.1016/j.jiph.2013.04.007
[75]  WHO (2020) Yellow Fever-African Region (AFRO), Togo.
https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON279
[76]  WHO (2006) Pesticides and Their Application for the Control of Vectors and Pests of Public Health Importance.
https://www.who.int/publications/i/item/who-cds-ntd-whopes-gcdpp-2006.1
[77]  David, J., Ismail, H.M., Chandor-Proust, A. and Paine, M.J.I. (2013) Role of Cytochrome P450s in Insecticide Resistance: Impact on the Control of Mosquito-Borne Diseases and Use of Insecticides on Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120429.
https://doi.org/10.1098/rstb.2012.0429
[78]  Baldacchino, F., Caputo, B., Chandre, F., Drago, A., della Torre, A., Montarsi, F., et al. (2015) Control Methods against Invasive Aedes Mosquitoes in Europe: A Review. Pest Management Science, 71, 1471-1485.
https://doi.org/10.1002/ps.4044
[79]  Carter, S.W. (1989) A Review of the Use of Synthetic Pyrethroids in Public Health and Vector Pest Control. Pesticide Science, 27, 361-374.
https://doi.org/10.1002/ps.2780270405
[80]  Sene, N.M., Mavridis, K., Ndiaye, E.H., Diagne, C.T., Gaye, A., Ngom, E.H.M., et al. (2021) Insecticide Resistance Status and Mechanisms in Aedes aegypti Populations from Senegal. PLOS Neglected Tropical Diseases, 15, e0009393.
https://doi.org/10.1371/journal.pntd.0009393
[81]  Adam, A. and Jassoy, C. (2021) Epidemiology and Laboratory Diagnostics of Dengue, Yellow Fever, Zika, and Chikungunya Virus Infections in Africa. Pathogens, 10, Article No. 1324.
https://doi.org/10.3390/pathogens10101324
[82]  Ranson, H., Abdallah, H., Badolo, A., Guelbeogo, W.M., Kerah-Hinzoumbé, C., Yangalbé-Kalnoné, E., et al. (2009) Insecticide Resistance in Anopheles gambiae: Data from the First Year of a Multi-Country Study Highlight the Extent of the Problem. Malaria Journal, 8, Article No. 299.
https://doi.org/10.1186/1475-2875-8-299
[83]  Paul, A., Harrington, L.C. and Scott, J.G. (2006) Evaluation of Novel Insecticides for Control of Dengue Vector Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 43, 55-60.
https://doi.org/10.1603/0022-2585(2006)043[0055:eonifc]2.0.co;2
[84]  Ranson, H. and Lissenden, N. (2016) Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation That Needs Urgent Action to Maintain Malaria Control. Trends in Parasitology, 32, 187-196.
https://doi.org/10.1016/j.pt.2015.11.010
[85]  Quezada-Yaguachi, W.E., Rodriguez, A.D., Solís-Santoyo, F., López-Solís, A.D., Black IV, W.C., Saavedra-Rodriguez, K., et al. (2022) Comparison of Insecticide Resistance and Its Enzyme Mechanisms among Aedes aegypti Collected with Three Methods in a Dengue-Endemic City in Southern Mexico. Advances in Entomology, 10, 252-266.
https://doi.org/10.4236/ae.2022.103018
[86]  Samuel, M., Dahan, Y.L., Coetzee, M. and Gilbert, A. (2019) Insecticide Resistance in the Major Arbovirus Vector Aedes aegypti from Johannesburg, South Africa, 2016. ResearchGate, 17, 206-216.
[87]  Ayres, C.F.J., Seixas, G., Borrego, S., Marques, C., Monteiro, I., Marques, C.S., et al. (2020) The V410L Knockdown Resistance Mutation Occurs in Island and Continental Populations of Aedes aegypti in West and Central Africa. PLOS Neglected Tropical Diseases, 14, e0008216.
https://doi.org/10.1371/journal.pntd.0008216
[88]  Yadouleton, A.W., Padonou, G., Asidi, A., Moiroux, N., Bio-Banganna, S., Corbel, V., et al. (2010) Insecticide Resistance Status in Anopheles Gambiae in Southern Benin. Malaria Journal, 9, Article No. 83.
https://doi.org/10.1186/1475-2875-9-83
[89]  Anges, Y., Jean-Robert, K., Christophe, C., Ramziyath, A., Carine, T., Achaz, A., et al. (2018) Sensibilité des populations d’ Aedes aegypti vis-à-vis des organochlorés, Pyréthrinoïdes et des carbamates dans la commune de Natitingou au Nord-Est du Bénin. European Scientific Journal, ESJ, 14, 134-142.
https://doi.org/10.19044/esj.2018.v14n33p134
[90]  Sombié, A., Saiki, E., Yaméogo, F., Sakurai, T., Shirozu, T., Fukumoto, S., et al. (2019) High Frequencies of F1534C and V1016I kdr Mutations and Association with Pyrethroid Resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Tropical Medicine and Health, 47, Article No. 2.
https://doi.org/10.1186/s41182-018-0134-5
[91]  Ouattara, L.P.E., Sangaré, I., Namountougou, M., Hien, A., Ouari, A., Soma, D.D., et al. (2019) Surveys of Arboviruses Vectors in Four Cities Stretching along a Railway Transect of Burkina Faso: Risk Transmission and Insecticide Susceptibility Status of Potential Vectors. Frontiers in Veterinary Science, 6, Article No. 140.
https://doi.org/10.3389/fvets.2019.00140
[92]  Namountougou, M., Soma, D.D., Balboné, M., Kaboré, D.A., Kientega, M., Hien, A., et al. (2020) Monitoring Insecticide Susceptibility in Aedes aegypti Populations from the Two Biggest Cities, Ouagadougou and Bobo-Dioulasso, in Burkina Faso: Implication of Metabolic Resistance. Tropical Medicine and Infectious Disease, 5, Article No. 84.
https://doi.org/10.3390/tropicalmed5020084
[93]  Badolo, A., Sombié, A., Pignatelli, P.M., Sanon, A., Yaméogo, F., Wangrawa, D.W., et al. (2019) Insecticide Resistance Levels and Mechanisms in Aedes aegypti Populations in and around Ouagadougou, Burkina Faso. PLOS Neglected Tropical Diseases, 13, e0007439.
https://doi.org/10.1371/journal.pntd.0007439
[94]  Dia, I., Diagne, C.T., Ba, Y., Diallo, D., Konate, L. and Diallo, M. (2012) Insecticide Susceptibility of Aedes aegypti Populations from Senegal and Cape Verde Archipelago. Parasites & Vectors, 5, Article No. 238.
https://doi.org/10.1186/1756-3305-5-238
[95]  Rocha, H.D.R., Paiva, M.H.S., Silva, N.M., de Araújo, A.P., et al. (2015) Susceptibility Profile of Aedes aegypti from Santiago Island, Cabo Verde, to Insecticides. Acta Tropica, 152, 66-73.
https://doi.org/10.1016/j.actatropica.2015.08.013
[96]  Djiappi-Tchamen, B., Nana-Ndjangwo, M.S., Mavridis, K., Talipouo, A., Nchoutpouen, E., Makoudjou, I., et al. (2021) Analyses of Insecticide Resistance Genes in Aedes aegypti and Aedes albopictus Mosquito Populations from Cameroon. Genes, 12, Article No. 828.
https://doi.org/10.3390/genes12060828
[97]  Yougang, A.P., Kamgang, B., Bahun, T.A.W., Tedjou, A.N., Nguiffo-Nguete, D., Njiokou, F., et al. (2020) First Detection of F1534C Knockdown Resistance Mutation in Aedes aegypti (Diptera: Culicidae) from Cameroon. Infectious Diseases of Poverty, 9, Article No. 152.
https://doi.org/10.1186/s40249-020-00769-1
[98]  Kamgang, B., Marcombe, S., Chandre, F., Nchoutpouen, E., Nwane, P., Etang, J., et al. (2011) Insecticide Susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasites & Vectors, 4, Article No. 79.
https://doi.org/10.1186/1756-3305-4-79
[99]  Ngoagouni, C., Kamgang, B., Brengues, C., Yahouedo, G., Paupy, C., Nakouné, E., et al. (2016) Susceptibility Profile and Metabolic Mechanisms Involved in Aedes aegypti and Aedes albopictus Resistant to DDT and Deltamethrin in the Central African Republic. Parasites & Vectors, 9, Article No. 599.
https://doi.org/10.1186/s13071-016-1887-5
[100]  Kamgang, B., Wilson-Bahun, T.A., Yougang, A.P., Lenga, A. and Wondji, C.S. (2020) Contrasting Resistance Patterns to Type I and II Pyrethroids in Two Major Arbovirus Vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infectious Diseases of Poverty, 9, Article No. 23.
https://doi.org/10.1186/s40249-020-0637-2
[101]  Konan, L.Y., Coulibaly, I.Z., Kone, B.A., Ziogba, J.T., Diallo, A., Ekra, D.K., et al. (2012) Aedes aegypti Susceptibility to Insecticide from Abidjan City, Cote d’Ivoire. Vector-Borne and Zoonotic Diseases, 12, 325-329.
https://doi.org/10.1089/vbz.2011.0617
[102]  Négnorogo, G.-C., Akré, M.A., Amanan, A.K., Nana Rose, D., Phamien Ludovic, A.A., Kouakou Fidèle, B. et al. (2015) Insecticides Susceptibility of Two Distinct Morphologies at Larval Stage of Aedes aegypti (Diptera: Culicidae) from Abidjan (Côte d’ Ivoire). European Journal of Scientific Research, 126, 434-443.
[103]  Konan, L.Y., Oumbouke, W.A., Silué, U.G., Coulibaly, I.Z., Ziogba, J.T., N’Guessan, R.K., et al. (2021) Insecticide Resistance Patterns and Mechanisms in Aedes aegypti (Diptera: Culicidae) Populations across Abidjan, Côte d’Ivoire Reveal Emergent Pyrethroid Resistance. Journal of Medical Entomology, 58, 1808-1816.
https://doi.org/10.1093/jme/tjab045
[104]  Abdulai, A., Owusu-Asenso, C.M., Akosah-Brempong, G., Mohammed, A.R., Sraku, I.K., Attah, S.K., et al. (2020) Insecticide Resistance Status of Aedes aegypti in Southern and Northern Ghana. Parasites & Vectors, 16, Article No. 135.
https://doi.org/10.1186/s13071-023-05752-x
[105]  Kawada, H., Higa, Y., Futami, K., Muranami, Y., Kawashima, E., Osei, J.H.N., et al. (2016) Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression. PLOS Neglected Tropical Diseases, 10, e0004780.
https://doi.org/10.1371/journal.pntd.0004780
[106]  Owusu-Asenso, C.M., Mingle, J.A.A., Weetman, D. and Afrane, Y.A. (2018) Spatiotemporal Distribution and Insecticide Resistance Status of Aedes aegypti in Ghana. Parasites & Vectors, 15, Article No. 61.
https://doi.org/10.1186/s13071-022-05179-w
[107]  Fagbohun, I.K., Idowu, E.T., Olakiigbe, A.K., Oyeniyi, A.T., Otubanjo, O.A. and Awolola, T.S. (2020) Metabolic Resistance Mechanism in Aedes aegypti from Lagos State, Nigeria. The Journal of Basic and Applied Zoology, 81, Article No. 59.
https://doi.org/10.1186/s41936-020-00194-8
[108]  Fagbohun, I., Idowu, E., Oyeniyi, T., Adeogun, A. and Adesalu, K. (2021) First Detection and Co-Occurrence of kdr (F1534C and S989P) Mutations in Multiple Insecticides Resistant Aedes aegypti in Nigeria. Preprints.
https://doi.org/10.20944/preprints202107.0302.v1
[109]  Mathias, L., Baraka, V., Philbert, A., Innocent, E., Francis, F., Nkwengulila, G., et al. (2017) Habitat Productivity and Pyrethroid Susceptibility Status of Aedes aegypti Mosquitoes in Dar Es Salaam, Tanzania. Infectious Diseases of Poverty, 6, Article No. 102.
https://doi.org/10.1186/s40249-017-0316-0
[110]  Kahamba, N.F., Limwagu, A.J., Mapua, S.A., Msugupakulya, B.J., Msaky, D.S., Kaindoa, E.W., et al. (2020) Habitat Characteristics and Insecticide Susceptibility of Aedes aegypti in the Ifakara Area, South-Eastern Tanzania. Parasites & Vectors, 13, Article No. 53.
https://doi.org/10.1186/s13071-020-3920-y
[111]  Hemingway, J., Hawkes, N.J., McCarroll, L. and Ranson, H. (2004) The Molecular Basis of Insecticide Resistance in Mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653-665.
https://doi.org/10.1016/j.ibmb.2004.03.018
[112]  Kamgang, B., Yougang, A.P., Tchoupo, M., Riveron, J.M. and Wondji, C. (2017) Temporal Distribution and Insecticide Resistance Profile of Two Major Arbovirus Vectors Aedes aegypti and Aedes albopictus in Yaoundé, the Capital City of Cameroon. Parasites & Vectors, 10, Article No. 469.
https://doi.org/10.1186/s13071-017-2408-x
[113]  Kudom, A.A. (2020) Entomological Surveillance to Assess Potential Outbreak of Aedes-Borne Arboviruses and Insecticide Resistance Status of Aedes aegypti from Cape Coast, Ghana. Acta Tropica, 202, Article 105257.
https://doi.org/10.1016/j.actatropica.2019.105257
[114]  Husham, A.O., Abdalmagid, M.A. and Brair, M. (2010) Status Susceptibility of Dengue Vector; Aedes aegypti to Different Groups of Insecticides in Port Sudan City-Red Sea State. Sudanese Journal of Public Health, 5, 199-202.
[115]  Pocquet, N., Darriet, F., Zumbo, B., Milesi, P., Thiria, J., Bernard, V., et al. (2014) Insecticide Resistance in Disease Vectors from Mayotte: An Opportunity for Integrated Vector Management. Parasites & Vectors, 7, Article No. 299.
https://doi.org/10.1186/1756-3305-7-299
[116]  Ndams, I.S., Laila, K.M. and Tukur, Z. (2010) Susceptibility of Some Species of Mosquitoes to Permethrin Pyrethroid in Zaria Nigeria. Science World Journal, 1, 15-19.
https://doi.org/10.4314/swj.v1i1.51691
[117]  Ayorinde, A., Oboh, B., Oduola, A. and Otubanjo, O. (2015) The Insecticide Susceptibility Status of Aedes aegypti (Diptera: Culicidae) in Farm and Nonfarm Sites of Lagos State, Nigeria. Journal of Insect Science, 15, 75-75.
https://doi.org/10.1093/jisesa/iev045
[118]  Olatubosun, A., Abiodun, O., James, O. and Taiwo, A. (2016) Surveillance and Insecticide Susceptibility Status of Culicine Mosquitoes in Selected Communities Utilizing Long-Lasting Insecticidal Nets in Kwara State, Nigeria. Animal Research International, 13, 2483-2491.
[119]  Davies, T.G.E., Field, L.M., Usherwood, P.N.R. and Williamson, M.S. (2007) A Comparative Study of Voltage‐Gated Sodium Channels in the Insecta: Implications for Pyrethroid Resistance in Anopheline and Other Neopteran Species. Insect Molecular Biology, 16, 361-375.
https://doi.org/10.1111/j.1365-2583.2007.00733.x
[120]  Mota-Sanchez, D., Whalon, M.E., Hollingworth, R.M. and Xue, Q. (2008) Documentation of Pesticide Resistance in Arthropods. In: Whalon, M.E., Mota-Sanchez, D. and Hollingworth, R.M., Eds., Global Pesticide Resistance in Arthropods, CABI, 32-39.
https://doi.org/10.1079/9781845933531.0032
[121]  Fournier, D. and Mutero, A. (1994) Modification of Acetylcholinesterase as a Mechanism of Resistance to Insecticides. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 108, 19-31.
https://doi.org/10.1016/1367-8280(94)90084-1
[122]  Grigoraki, L., Lagnel, J., Kioulos, I., Kampouraki, A., Morou, E., Labbé, P., et al. (2015) Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus. PLOS Neglected Tropical Diseases, 9, e0003771.
https://doi.org/10.1371/journal.pntd.0003771
[123]  Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., et al. (2004) The Unique Mutation in ace-1 Giving High Insecticide Resistance Is Easily Detectable in Mosquito Vectors. Insect Molecular Biology, 13, 1-7.
https://doi.org/10.1111/j.1365-2583.2004.00452.x
[124]  Soderlund, D.M. (2011) Molecular Mechanisms of Pyrethroid Insecticide Neurotoxicity: Recent Advances. Archives of Toxicology, 86, 165-181.
https://doi.org/10.1007/s00204-011-0726-x
[125]  Harris, A.F., Rajatileka, S. and Ranson, H. (2010) Pyrethroid Resistance in Aedes aegypti from Grand Cayman. The American Society of Tropical Medicine and Hygiene, 83, 277-284.
https://doi.org/10.4269/ajtmh.2010.09-0623
[126]  García, G.P., Flores, A.E., Fernández-Salas, I., Saavedra-Rodríguez, K., Reyes-Solis, G., Lozano-Fuentes, S., et al. (2009) Recent Rapid Rise of a Permethrin Knock down Resistance Allele in Aedes aegypti in México. PLOS Neglected Tropical Diseases, 3, e531.
https://doi.org/10.1371/journal.pntd.0000531
[127]  Dusfour, I., Zorrilla, P., Guidez, A., Issaly, J., Girod, R., Guillaumot, L., et al. (2015) Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide. PLOS Neglected Tropical Diseases, 9, e0004226.
https://doi.org/10.1371/journal.pntd.0004226
[128]  Buckingham, S.D., Biggin, P.C., Sattelle, B.M., Brown, L.A. and Sattelle, D.B. (2005) Insect GABA Receptors: Splicing, Editing, and Targeting by Antiparasitics and Insecticides. Molecular Pharmacology, 68, 942-951.
https://doi.org/10.1124/mol.105.015313
[129]  Tantely, M.L., Tortosa, P., Alout, H., Berticat, C., Berthomieu, A., Rutee, A., et al. (2010) Insecticide Resistance in Culex Pipiens Quinquefasciatus and Aedes albopictus Mosquitoes from La Réunion Island. Insect Biochemistry and Molecular Biology, 40, 317-324.
https://doi.org/10.1016/j.ibmb.2010.02.005
[130]  Low, V.L., Vinnie-Siow, W.Y., Lim, Y.A.L., Tan, T.K., Leong, C.S., Chen, C.D. et al. (2015) First Molecular Genotyping of A302S Mutation in the Gamma Aminobutyric Acid (GABA) Receptor in Aedes albopictus from Malaysia. Tropical Biomedicine, 32, 554-556.
[131]  Sombié, A., Ouédraogo, W.M., Oté, M., Saiki, E., Sakurai, T., Yaméogo, F., et al. (2023) Association of 410L, 1016I and 1534C kdr Mutations with Pyrethroid Resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and Development of a One-Step Multiplex PCR Method for the Simultaneous Detection of 1534C and 1016I kdr Mutations. Parasites & Vectors, 16, Article No. 137.
https://doi.org/10.1186/s13071-023-05743-y
[132]  Li, X., Schuler, M.A. and Berenbaum, M.R. (2007) Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology, 52, 231-253.
https://doi.org/10.1146/annurev.ento.51.110104.151104
[133]  Bariami, V., Jones, C.M., Poupardin, R., Vontas, J. and Ranson, H. (2012) Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti. PLOS Neglected Tropical Diseases, 6, e1692.
https://doi.org/10.1371/journal.pntd.0001692
[134]  Saavedra-Rodriguez, K., Strode, C., Flores, A.E., Garcia-Luna, S., Reyes-Solis, G., Ranson, H., et al. (2013) Differential Transcription Profiles in aedes aegypti Detoxification Genes after Temephos Selection. Insect Molecular Biology, 23, 199-215.
https://doi.org/10.1111/imb.12073
[135]  Marcombe, S., Mathieu, R.B., Pocquet, N., Riaz, M., Poupardin, R., Sélior, S., et al. (2012) Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors. PLOS ONE, 7, e30989.
https://doi.org/10.1371/journal.pone.0030989
[136]  Lumjuan, N., Rajatileka, S., Changsom, D., Wicheer, J., Leelapat, P., Prapanthadara, L., et al. (2011) The Role of the Aedes aegypti Epsilon Glutathione Transferases in Conferring Resistance to DDT and Pyrethroid Insecticides. Insect Biochemistry and Molecular Biology, 41, 203-209.
https://doi.org/10.1016/j.ibmb.2010.12.005
[137]  Toé, H.K., Zongo, S., Guelbeogo, M.W., Kamgang, B., Viana, M., Tapsoba, M., et al. (2022) Multiple Insecticide Resistance and First Evidence of V410l kdr Mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso. Medical and Veterinary Entomology, 36, 309-319.
https://doi.org/10.1111/mve.12602
[138]  Ritchie, S.A. and Johnson, B.J. (2017) Advances in Vector Control Science: Rear-and-Release Strategies Show Promise… but Don’t Forget the Basics. The Journal of Infectious Diseases, 215, S103-S108.
https://doi.org/10.1093/infdis/jiw575
[139]  Naik, B.R., Gowreeswari, G.S., Singh, Y., Satyavathi, R., Daravath, S.S. and Reddy, P.R. (2014) Bio-Synthesis of Silver Nanoparticles from Leaf Extract of Pongamia pinnata as an Effective Larvicide on Dengue Vector Aedes albopictus (Skuse) (Diptera: Culicidae). Advances in Entomology, 2, 93-101.
https://doi.org/10.4236/ae.2014.22016
[140]  Williams, A., Franz, A., Reid, W. and Olson, K. (2020) Antiviral Effectors and Gene Drive Strategies for Mosquito Population Suppression or Replacement to Mitigate Arbovirus Transmission by Aedes aegypti. Insects, 11, Article No. 52.
https://doi.org/10.3390/insects11010052
[141]  Paes de Andrade, P., Aragão, F.J.L., Colli, W., Dellagostin, O.A., Finardi-Filho, F., Hirata, M.H., et al. (2016) Use of Transgenic Aedes aegypti in Brazil: Risk Perception and Assessment. Bulletin of the World Health Organization, 94, 766-771.
https://doi.org/10.2471/blt.16.173377
[142]  Kistler, K.E., Vosshall, L.B. and Matthews, B.J. (2015) Genome Engineering with CRISPR-Cas9 in the Mosquito Aedes aegypti. Cell Reports, 11, 51-60.
https://doi.org/10.1016/j.celrep.2015.03.009
[143]  Wang, L., Chen, R., Liu, J., Lee, I., Lee, C., Kuo, H., et al. (2011) DC-SIGN (CD209) Promoter-336 A/G Polymorphism Is Associated with Dengue Hemorrhagic Fever and Correlated to DC-SIGN Expression and Immune Augmentation. PLOS Neglected Tropical Diseases, 5, e934.
https://doi.org/10.1371/journal.pntd.0000934
[144]  Turner, J., Krishna, R., van’t Hof, A.E., Sutton, E.R., Matzen, K. and Darby, A.C. (2018) The Sequence of a Male-Specific Genome Region Containing the Sex Determination Switch in Aedes aegypti. Parasites & Vectors, 11, Article No. 549.
https://doi.org/10.1186/s13071-018-3090-3
[145]  Li, M., Yang, T., Kandul, N.P., Bui, M., Gamez, S., Raban, R., et al. (2020) Development of a Confinable Gene Drive System in the Human Disease Vector Aedes aegypti. eLife, 9, e51701.
https://doi.org/10.7554/elife.51701
[146]  Flores, H.A. and O’Neill, S.L. (2018) Controlling Vector-Borne Diseases by Releasing Modified Mosquitoes. Nature Reviews Microbiology, 16, 508-518.
https://doi.org/10.1038/s41579-018-0025-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133