|
microRNAs对脑出血后神经炎症影响的研究进展
|
Abstract:
脑出血后所释放的大量内源性物质和血液中的毒性成分可加剧炎性反应和神经缺损,严重影响脑出血患者预后。microRNAs水平在脑出血后发生变化,可通过多种机制调控神经炎症的功能。文章综述归纳总结了microRNAs对脑出血后神经炎症影响的研究进展,旨在为出血性中风患者发现更有效的治疗方法。
A large number of endogenous substances and toxic components in blood released after intracerebral hemorrhage can aggravate inflammatory reaction and neurological damage, which seriously affect the prognosis of patients with intracerebral hemorrhage. The level of microRNAs changes after intracerebral hemorrhage, which can regulate the function of neuroinflammation through various mechanisms. This review summarizes the research progress of the effect of microRNAs on neuroinflammation after intracerebral hemorrhage in order to find more effective treatment methods for patients with hemorrhagic stroke.
[1] | Garg, R. and Biller, J. (2019) Recent Advances in Spontaneous Intracerebral Hemorrhage. F1000Research, 8, 302. https://doi.org/10.12688/f1000research.16357.1 |
[2] | Chen, S., Li, L., Peng, C., Bian, C., Ocak, P.E., Zhang, J.H., et al. (2022) Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxidants & Redox Signaling, 37, 115-134. https://doi.org/10.1089/ars.2021.0072 |
[3] | Wu, X., Luo, J., Liu, H., Cui, W., Guo, K., Zhao, L., et al. (2020) Recombinant Adiponectin Peptide Ameliorates Brain Injury Following Intracerebral Hemorrhage by Suppressing Astrocyte-Derived Inflammation via the Inhibition of Drp1-Mediated Mitochondrial Fission. Translational Stroke Research, 11, 924-939. https://doi.org/10.1007/s12975-019-00768-x |
[4] | Tschoe, C., Bushnell, C.D., Duncan, P.W., Alexander-Miller, M.A. and Wolfe, S.Q. (2020) Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. Journal of Stroke, 22, 29-46. https://doi.org/10.5853/jos.2019.02236 |
[5] | Lei, P., Li, Z., Hua, Q., Song, P., Gao, L., Zhou, L., et al. (2023) Ursolic Acid Alleviates Neuroinflammation after Intracerebral Hemorrhage by Mediating Microglial Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway. International Journal of Molecular Sciences, 24, Article 14771. https://doi.org/10.3390/ijms241914771 |
[6] | Wang, T., Nowrangi, D., Yu, L., Lu, T., Tang, J., Han, B., et al. (2018) Activation of Dopamine D1 Receptor Decreased NLRP3-Mediated Inflammation in Intracerebral Hemorrhage Mice. Journal of Neuroinflammation, 15, Article No. 2. https://doi.org/10.1186/s12974-017-1039-7 |
[7] | Xu, P., Hong, Y., Xie, Y., Yuan, K., Li, J., Sun, R., et al. (2020) TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 12, 643-659. https://doi.org/10.1007/s12975-020-00840-x |
[8] | Zhou, K., Shi, L., Wang, Y., Chen, S. and Zhang, J. (2016) Recent Advances of the NLRP3 Inflammasome in Central Nervous System Disorders. Journal of Immunology Research, 2016, Article ID: 9238290. https://doi.org/10.1155/2016/9238290 |
[9] | Zhou, Y., Wang, Y., Wang, J., Anne Stetler, R. and Yang, Q. (2014) Inflammation in Intracerebral Hemorrhage: From Mechanisms to Clinical Translation. Progress in Neurobiology, 115, 25-44. https://doi.org/10.1016/j.pneurobio.2013.11.003 |
[10] | Lin, P., Yu, S. and Yang, P. (2010) MicroRNA in Lung Cancer. British Journal of Cancer, 103, 1144-1148. https://doi.org/10.1038/sj.bjc.6605901 |
[11] | 丁敬健, 张升涛, 郭永锋, 等. 微RNA-196a-1-3p靶向Ras响应元件结合蛋白调控胆管癌细胞增殖的机制研究[J]. 安徽医药, 2024(7): 1399-1403+1488. |
[12] | Zhang, H., Liu, S., Chen, L., Sheng, Y., Luo, W. and Zhao, G. (2021) MicroRNA miR-509-3p Inhibit Metastasis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Bioengineered, 12, 2263-2273. https://doi.org/10.1080/21655979.2021.1932210 |
[13] | 罗皓珑, 陈梦圆, 骈雅婧, 等. 微小RNA-221-3p通过DDIT4抑制镉诱导的TM3细胞凋亡机制[J]. 卫生研究, 2024, 53(3): 478-486. |
[14] | Fariyike, B., Singleton, Q., Hunter, M., Hill, W.D., Isales, C.M., Hamrick, M.W., et al. (2019) Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mechanisms of Ageing and Development, 178, 9-15. https://doi.org/10.1016/j.mad.2018.12.001 |
[15] | Lin, Z., He, H., Wang, M. and Liang, J. (2019) MicroRNA-130a Controls Bone Marrow Mesenchymal Stem Cell Differentiation Towards the Osteoblastic and Adipogenic Fate. Cell Proliferation, 52, e12688. https://doi.org/10.1111/cpr.12688 |
[16] | 刘筱蔼, 罗友根. MiRNA调控脑缺血/再灌注诱导的自噬信号通路研究进展[J]. 中山大学学报(医学科学版), 2024, 45(1): 21-27. |
[17] | Dong, W., Geng, S., Cui, J., Gao, W., Sun, Y. and Xu, T. (2022) Microrna-103 and Microrna-190 Negatively Regulate Nf-Κb-Mediated Immune Responses by Targeting IL-1R1 in Miichthys Miiuy. Fish & Shellfish Immunology, 123, 94-101. https://doi.org/10.1016/j.fsi.2022.02.043 |
[18] | Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of MicroRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20. https://doi.org/10.1038/s41580-018-0059-1 |
[19] | Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167. https://doi.org/10.3390/ijms23137167 |
[20] | Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E. and Ambros, V. (2004) Expression Profiling of Mammalian MicroRNAs Uncovers a Subset of Brain-Expressed MicroRNAs with Possible Roles in Murine and Human Neuronal Differentiation. Genome Biology, 5, Article No. R13. https://doi.org/10.1186/gb-2004-5-3-r13 |
[21] | Freilich, R.W., Woodbury, M.E. and Ikezu, T. (2013) Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia. PLOS ONE, 8, e79416. https://doi.org/10.1371/journal.pone.0079416 |
[22] | Liu, F., Wang, J., Fu, Q., Zhang, X., Wang, Y., Liu, J., et al. (2015) VEGF-Activated miR-144 Regulates Autophagic Survival of Prostate Cancer Cells against Cisplatin. Tumor Biology, 37, 15627-15633. https://doi.org/10.1007/s13277-015-4383-1 |
[23] | Wang, Z., Yuan, B., Fu, F., Huang, S. and Yang, Z. (2017) Hemoglobin Enhances miRNA-144 Expression and Autophagic Activation Mediated Inflammation of Microglia via mTOR Pathway. Scientific Reports, 7, Article No. 11861. https://doi.org/10.1038/s41598-017-12067-2 |
[24] | Li, Y., Zhao, Y., Cheng, M., Qiao, Y., Wang, Y., Xiong, W., et al. (2018) Suppression of MicroRNA-144-3p Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Promoting Brg1/Nrf2/Are Signaling. Journal of Biochemical and Molecular Toxicology, 32, e22044. https://doi.org/10.1002/jbt.22044 |
[25] | Yu, A., Zhang, T., Zhong, W., Duan, H., Wang, S., Ye, P., et al. (2017) MiRNA-144 Induces Microglial Autophagy and Inflammation Following Intracerebral Hemorrhage. Immunology Letters, 182, 18-23. https://doi.org/10.1016/j.imlet.2017.01.002 |
[26] | Wang, X., Hong, Y., Wu, L., Duan, X., Hu, Y., Sun, Y., et al. (2021) Deletion of MicroRNA-144/451 Cluster Aggravated Brain Injury in Intracerebral Hemorrhage Mice by Targeting 14-3-3ζ. Frontiers in Neurology, 11, Article ID: 551411. https://doi.org/10.3389/fneur.2020.551411 |
[27] | Fan, W., Li, X., Zhang, D., Li, H., Shen, H., Liu, Y., et al. (2018) Detrimental Role of MiRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury Is Mediated by Formyl Peptide Receptor 2 Downregulation Both in Vivo and in Vitro. Cell Transplantation, 28, 723-738. https://doi.org/10.1177/0963689718817219 |
[28] | 罗腾. 调控MicroRNA-144-3p对大鼠脑出血后血脑屏障、血肿周围炎症因子及抗氧化能力的影响[D]: [硕士学位论文]. 贵阳: 贵州医科大学, 2023. |
[29] | 白雅林, 方占海, 丁晨哲, 等. 人参皂苷Rg1调节miR-144-3p/FPR2/p38信号通路对实验性脑出血大鼠血脑屏障损伤和神经炎症的影响[J]. 中国免疫学杂志, 2023, 39(12): 2534-2539. |
[30] | Mahesh, G. and Biswas, R. (2019) MicroRNA-155: A Master Regulator of Inflammation. Journal of Interferon & Cytokine Research, 39, 321-330. https://doi.org/10.1089/jir.2018.0155 |
[31] | Jafarzadeh, A., Naseri, A., Shojaie, L., Nemati, M., Jafarzadeh, S., Bannazadeh Baghi, H., et al. (2021) MicroRNA-155 and Antiviral Immune Responses. International Immunopharmacology, 101, Article ID: 108188. https://doi.org/10.1016/j.intimp.2021.108188 |
[32] | Xu, H., Fang, X., Zhu, S., Xu, X., Zhang, Z., Wang, Z., et al. (2016) Glucocorticoid Treatment Inhibits Intracerebral Hemorrhage-Induced Inflammation by Targeting the MicroRNA-155/SOCS-1 Signaling Pathway. Molecular Medicine Reports, 14, 3798-3804. https://doi.org/10.3892/mmr.2016.5716 |
[33] | Zhang, W., Wang, L., Wang, R., Duan, Z. and Wang, H. (2020) A Blockade of MicroRNA-155 Signal Pathway Has a Beneficial Effect on Neural Injury after Intracerebral Haemorrhage via Reduction in Neuroinflammation and Oxidative Stress. Archives of Physiology and Biochemistry, 128, 1235-1241. https://doi.org/10.1080/13813455.2020.1764047 |
[34] | Chhunchha, B., Kubo, E. and Singh, D.P. (2020) Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells, 9, Article 1861. https://doi.org/10.3390/cells9081861 |
[35] | Nakazato, R., Kawabe, K., Yamada, D., Ikeno, S., Mieda, M., Shimba, S., et al. (2017) Disruption of Bmal1 Impairs Blood-Brain Barrier Integrity via Pericyte Dysfunction. The Journal of Neuroscience, 37, 10052-10062. https://doi.org/10.1523/jneurosci.3639-16.2017 |
[36] | Gong, Y., Zhang, G., Li, B., Cao, C., Cao, D., Li, X., et al. (2021) BMAL1 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats by Regulating the Nrf2 Signaling Pathway. Annals of Translational Medicine, 9, 1617-1617. https://doi.org/10.21037/atm-21-1863 |
[37] | 买买江∙阿不力孜. MicroRNA-155在急性脑出血患者血清中表达及其临床意义研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2019. |
[38] | Lv, L., Shen, J., Xu, J., Wu, X., Zeng, C., Lin, L., et al. (2020) MiR-124-3p Reduces Angiotensin II-Dependent Hypertension by Down-Regulating EGR1. Journal of Human Hypertension, 35, 696-708. https://doi.org/10.1038/s41371-020-0381-x |
[39] | 陈曦, 李玉姣, 赵岚. MicroRNA-124在阿尔兹海默症中的作用及针刺干预研究进展[J]. 天津中医药大学学报, 2024, 43(1): 64-70. |
[40] | 江典存, 李晓治, 倪良诚, 等. 微小RNA-124对肾癌细胞的自噬和增强顺铂敏感性的影响[J]. 中国临床药理学杂志, 2021, 37(20): 2766-2769. |
[41] | Periyasamy, P., Liao, K., Kook, Y.H., Niu, F., Callen, S.E., Guo, M., et al. (2017) Cocaine-Mediated Downregulation of MiR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Molecular Neurobiology, 55, 3196-3210. https://doi.org/10.1007/s12035-017-0584-5 |
[42] | Chen, X., Jiang, M., Li, H., Wang, Y., Shen, H., Li, X., et al. (2020) CX3CL1/CX3CR1 Axis Attenuates Early Brain Injury via Promoting the Delivery of Exosomal MicroRNA-124 from Neuron to Microglia after Subarachnoid Hemorrhage. Journal of Neuroinflammation, 17, Article No. 209. https://doi.org/10.1186/s12974-020-01882-6 |
[43] | Bao, W., Zhou, X., Zhou, L., Wang, F., Yin, X., Lu, Y., et al. (2020) Targeting MiR-124/Ferroportin Signaling Ameliorated Neuronal Cell Death through Inhibiting Apoptosis and Ferroptosis in Aged Intracerebral Hemorrhage Murine Model. Aging Cell, 19, e13235. https://doi.org/10.1111/acel.13235 |
[44] | Morales-Martínez, M. and Vega, M.I. (2022) Role of MicroRNA-7 (miR-7) in Cancer Physiopathology. International Journal of Molecular Sciences, 23, Article 9091. https://doi.org/10.3390/ijms23169091 |
[45] | 秦小静, 范会利, 林旭, 等. MicroRNA-7-5p在甲状腺乳头状癌中的表达及机制[J]. 实用医学杂志, 2022, 38(5): 565-570. |
[46] | Yue, D., Zhao, J., Chen, H., Guo, M., Chen, C., Zhou, Y., et al. (2020) MicroRNA-7, Synergizes with RORα, Negatively Controls the Pathology of Brain Tissue Inflammation. Journal of Neuroinflammation, 17, Article No. 28. https://doi.org/10.1186/s12974-020-1710-2 |
[47] | Luo, B., Li, L., Song, X., Chen, H., Yun, D., Wang, L., et al. (2024) MicroRNA-7 Attenuates Secondary Brain Injury Following Experimental Intracerebral Hemorrhage via Inhibition of NLRP3. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107670. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107670 |
[48] | 钱红, 胡柯, 刘理静, 等. miR-7靶向沉默EGFR抑制大鼠星形胶质细胞活化[J]. 中国药理学通报, 2018, 34(3): 376-382. |
[49] | 钱红, 胡柯, 谢明, 等. 侧脑室注射miR-7通过EGFR/STAT3途径抑制大鼠脑出血后脑损伤[J]. 细胞与分子免疫学杂志, 2018, 34(2): 141-147. |
[50] | Soreq, H. and Wolf, Y. (2011) NeurimmiRs: MicroRNAs in the Neuroimmune Interface. Trends in Molecular Medicine, 17, 548-555. https://doi.org/10.1016/j.molmed.2011.06.009 |
[51] | Mu, C., Gao, M., Xu, W., Sun, X., Chen, T., Xu, H., et al. (2024) Mechanisms of MicroRNA-132 in Central Neurodegenerative Diseases: A Comprehensive Review. Biomedicine & Pharmacotherapy, 170, Article ID: 116029. https://doi.org/10.1016/j.biopha.2023.116029 |
[52] | Zhang, Y., Han, B., He, Y., Li, D., Ma, X., Liu, Q., et al. (2017) MicroRNA-132 Attenuates Neurobehavioral and Neuropathological Changes Associated with Intracerebral Hemorrhage in Mice. Neurochemistry International, 107, 182-190. https://doi.org/10.1016/j.neuint.2016.11.011 |
[53] | 胥成朗, 李强, 谭承睿, 等. 高血压性脑出血患者血清miR-132、miR-34a水平及其与预后的关系[J]. 疑难病杂志, 2023, 22(9): 897-901. |
[54] | 杨永祥, 崔效玮, 叶玉勤, 等. 外泌体miR-146a对N9型小胶质细胞介导炎症反应的作用[J]. 中华神经外科疾病研究杂志, 2018, 17(6): 500-503. |
[55] | 李矜, 张晨, 辛竞妍, 等. 糖络宁通过调控miR-146a减轻高糖诱导的大鼠背根神经节细胞炎症反应机制研究[J]. 环球中医药, 2022, 15(11): 2059-2063. |
[56] | 陆超明, 虞大为, 徐东升, 等. 微小RNA-146a保护脑出血大鼠神经的调控机制[J]. 实用临床医药杂志, 2024, 28(13): 30-35. |
[57] | Qu, X., Wang, N., Cheng, W., Xue, Y., Chen, W. and Qi, M. (2019) MicroRNA-146a Protects against Intracerebral Hemorrhage by Inhibiting Inflammation and Oxidative Stress. Experimental and Therapeutic Medicine, 18, 3920-3928. https://doi.org/10.3892/etm.2019.8060 |
[58] | 吴俊波, 杨杰, 肖锋, 等. miR-146a调控TLR4/NF-κB通路对脑出血模型大鼠的保护作用及机制研究[J]. 中国免疫学杂志, 2024, 40(1): 82-85. |
[59] | Zhang, H., Wang, Y., Lian, L., Zhang, C. and He, Z. (2020) Glycine-Histidine-Lysine (GHK) Alleviates Astrocytes Injury of Intracerebral Hemorrhage via the Akt/MiR-146a-3p/AQP4 Pathway. Frontiers in Neuroscience, 14, Article 576389. https://doi.org/10.3389/fnins.2020.576389 |
[60] | Wang, M., Mungur, R., Lan, P., et al. (2018) MicroRNA-21 and MicroRNA-146a Negatively Regulate the Secondary Inflammatory Response of Microglia after Intracerebral Hemorrhage. International Journal of Clinical and Experimental Pathology, 11, 3348-3356. |
[61] | Jeffries, J., Zhou, W., Hsu, A.Y. and Deng, Q. (2019) MiRNA-223 at the Crossroads of Inflammation and Cancer. Cancer Letters, 451, 136-141. https://doi.org/10.1016/j.canlet.2019.02.051 |
[62] | Nguyen, M., Hoang, H., Rasheed, A., Duchez, A., Wyatt, H., Cottee, M.L., et al. (2022) MiR-223 Exerts Translational Control of Proatherogenic Genes in Macrophages. Circulation Research, 131, 42-58. https://doi.org/10.1161/circresaha.121.319120 |
[63] | Yang, Z., Zhong, L., Xian, R. and Yuan, B. (2015) MicroRNA-223 Regulates Inflammation and Brain Injury via Feedback to NLRP3 Inflammasome after Intracerebral Hemorrhage. Molecular Immunology, 65, 267-276. https://doi.org/10.1016/j.molimm.2014.12.018 |
[64] | Peplow, P. and Martinez, B. (2017) Blood MicroRNAs as Potential Diagnostic Markers for Hemorrhagic Stroke. Neural Regeneration Research, 12, 13-18. https://doi.org/10.4103/1673-5374.198965 |
[65] | Wang, J., Zhu, Y., Jin, F., Tang, L., He, Z. and He, Z. (2016) Differential Expression of Circulating MicroRNAs in Blood and Haematoma Samples from Patients with Intracerebral Haemorrhage. Journal of International Medical Research, 44, 419-432. https://doi.org/10.1177/0300060516630852 |
[66] | 王加璐, 胡畔, 何振巍, 等. miR-21在脑出血患者外周血中表达特点的研究[J]. 解剖科学进展, 2018, 24(4): 339-343. |
[67] | Zhang, H., Wang, Y., Lv, Q., Gao, J., Hu, L. and He, Z. (2018) MicroRNA-21 Overexpression Promotes the Neuroprotective Efficacy of Mesenchymal Stem Cells for Treatment of Intracerebral Hemorrhage. Frontiers in Neurology, 9, Article 931. https://doi.org/10.3389/fneur.2018.00931 |
[68] | 朴金伟, 杨忠庆, 张卫东. 大鼠脑出血后MicroRNA-21抑制小胶质细胞激活产生炎症反应的机制[J]. 解剖学研究, 2018, 40(6): 461-464, 469. |
[69] | Ouyang, Y., Li, D., Wang, H., Wan, Z., Luo, Q., Zhong, Y., et al. (2019) MiR-21-5p/Dual-Specificity Phosphatase 8 Signalling Mediates the Anti-Inflammatory Effect of Haem Oxygenase-1 in Aged Intracerebral Haemorrhage Rats. Aging Cell, 18, e13022. https://doi.org/10.1111/acel.13022 |