|
神经胶质细胞在睡眠和睡眠障碍中的作用研究进展
|
Abstract:
神经胶质细胞在神经系统中扮演着重要角色,在广泛的认知中,神经胶质细胞起到了支持、运输营养物质,修复神经元,维持离子平衡,调节神经递质代谢等作用。对维持神经元周围局部微环境的稳定、实现神经元的功能具有重要意义。近年来,神经胶质细胞的生理功能及其在脑疾病中的重要作用逐渐得到广泛深入的研究。对睡眠的研究以往多集中在神经元上,近年来睡眠或者睡眠障碍与神经胶质的关系受到了诸多关注,本文就神经胶质细胞对维持昼夜节律以及服务于睡眠功能的相关性进行综述。
Neuroglial cells play an important role in the nervous system, and in a wide range of perceptions, neuroglial cells play a role in supporting and transporting nutrients, repairing neurons, maintaining ionic homeostasis, and regulating neurotransmitter metabolism. It is important for maintaining the stability of the local microenvironment around neurons and realizing the function of neurons. In recent years, the physiological functions of neuroglia and their important role in brain diseases have gradually been widely and deeply studied. Research on sleep used to focus on neurons, but in recent years, the relationship between sleep or sleep disorders and neuroglia has received much attention, and this paper reviews the relevance of neuroglia to the maintenance of circadian rhythms and the service of sleep function.
[1] | Billings, M.E., Hale, L. and Johnson, D.A. (2020) Physical and Social Environment Relationship with Sleep Health and Disorders. Chest, 157, 1304-1312. https://doi.org/10.1016/j.chest.2019.12.002 |
[2] | Ingiosi, A.M., Hayworth, C.R., Harvey, D.O., Singletary, K.G., Rempe, M.J., Wisor, J.P., et al. (2020) A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Current Biology, 30, 4373-4383.e7. https://doi.org/10.1016/j.cub.2020.08.052 |
[3] | Deboer, T. (2018) Sleep Homeostasis and the Circadian Clock: Do the Circadian Pacemaker and the Sleep Homeostat Influence Each Other’s Functioning? Neurobiology of Sleep and Circadian Rhythms, 5, 68-77. https://doi.org/10.1016/j.nbscr.2018.02.003 |
[4] | Pavlova, K.M. and Latreille, V. (2019) Sleep Disorders. The American Journal of Medicine, 132, 292-299. https://doi.org/10.1016/j.amjmed.2018.09.021 |
[5] | Frank, M.G. (2018) The Role of Glia in Sleep Regulation and Function. In: Landolt, H.-P. and Dijk, D.-J., Eds., Handbook of Experimental Pharmacology, Springer International Publishing, 83-96. https://doi.org/10.1007/164_2017_87 |
[6] | Nobili, P., Nikolić, L., Shen, W. and Pristov, J. (2023) Can Glial Cells Save Neurons in Epilepsy? Neural Regeneration Research, 18, 1417-1422. https://doi.org/10.4103/1673-5374.360281 |
[7] | Sofroniew, M.V. and Vinters, H.V. (2009) Astrocytes: Biology and Pathology. Acta Neuropathologica, 119, 7-35. https://doi.org/10.1007/s00401-009-0619-8 |
[8] | Hasel, P. and Liddelow, S.A. (2021) Astrocytes. Current Biology, 31, R326-R327. https://doi.org/10.1016/j.cub.2021.01.056 |
[9] | Lee, H., Wheeler, M.A. and Quintana, F.J. (2022) Function and Therapeutic Value of Astrocytes in Neurological Diseases. Nature Reviews Drug Discovery, 21, 339-358. https://doi.org/10.1038/s41573-022-00390-x |
[10] | Jackson, F.R., You, S. and Crowe, L.B. (2019) Regulation of Rhythmic Behaviors by Astrocytes. WIREs Developmental Biology, 9, e372. https://doi.org/10.1002/wdev.372 |
[11] | You, S., Yu, A.M., Roberts, M.A., Joseph, I.J. and Jackson, F.R. (2021) Circadian Regulation of the Drosophila Astrocyte Transcriptome. PLOS Genetics, 17, e1009790. https://doi.org/10.1371/journal.pgen.1009790 |
[12] | Peng, W., Liu, X., Ma, G., Wu, Z., Wang, Z., Fei, X., et al. (2023) Adenosine-Independent Regulation of the Sleep-Wake Cycle by Astrocyte Activity. Cell Discovery, 9, Article No. 16. https://doi.org/10.1038/s41421-022-00498-9 |
[13] | Vaidyanathan, T.V., Collard, M., Yokoyama, S., Reitman, M.E. and Poskanzer, K.E. (2021) Cortical Astrocytes Independently Regulate Sleep Depth and Duration via Separate GPCR Pathways. eLife, 10, e63329. https://doi.org/10.7554/elife.63329 |
[14] | Garofalo, S., Picard, K., Limatola, C., et al. (2020) Role of Glia in the Regulation of Sleep in Health and Disease. Comprehensive Physiology, 10, 687-712. |
[15] | Wang, F., Wang, W., Gu, S., Qi, D., Smith, N.A., Peng, W., et al. (2023) Distinct Astrocytic Modulatory Roles in Sensory Transmission during Sleep, Wakefulness, and Arousal States in Freely Moving Mice. Nature Communications, 14, Article No. 2186. https://doi.org/10.1038/s41467-023-37974-z |
[16] | Bojarskaite, L., Bjørnstad, D.M., Pettersen, K.H., Cunen, C., Hermansen, G.H., Åbjørsbråten, K.S., et al. (2020) Astrocytic Ca2+ Signaling Is Reduced during Sleep and Is Involved in the Regulation of Slow Wave Sleep. Nature Communications, 11, Article No. 3240. https://doi.org/10.1038/s41467-020-17062-2 |
[17] | Blum, I.D., Keleş, M.F., Baz, E., Han, E., Park, K., Luu, S., et al. (2021) Astroglial Calcium Signaling Encodes Sleep Need in Drosophila. Current Biology, 31, 150-162.e7. https://doi.org/10.1016/j.cub.2020.10.012 |
[18] | Theparambil, S.M., Kopach, O., Braga, A., Nizari, S., Hosford, P.S., Sagi-Kiss, V., et al. (2024) Adenosine Signalling to Astrocytes Coordinates Brain Metabolism and Function. Nature, 632, 139-146. https://doi.org/10.1038/s41586-024-07611-w |
[19] | Brancaccio, M., Patton, A.P., Chesham, J.E., Maywood, E.S. and Hastings, M.H. (2017) Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron, 93, 1420-1435.e5. https://doi.org/10.1016/j.neuron.2017.02.030 |
[20] | Barca-Mayo, O., Pons-Espinal, M., Follert, P., Armirotti, A., Berdondini, L. and De Pietri Tonelli, D. (2017) Astrocyte Deletion of Bmal1 Alters Daily Locomotor Activity and Cognitive Functions via GABA Signalling. Nature Communications, 8, Article No. 14336. https://doi.org/10.1038/ncomms14336 |
[21] | Chaturvedi, R., Stork, T., Yuan, C., Freeman, M.R. and Emery, P. (2022) Astrocytic GABA Transporter Controls Sleep by Modulating Gabaergic Signaling in Drosophila Circadian Neurons. Current Biology, 32, 1895-1908.e5. https://doi.org/10.1016/j.cub.2022.02.066 |
[22] | Zhang, P., Tan, C., Chen, G., Ge, Y., Xu, J., Xia, L., et al. (2018) Patients with Chronic Insomnia Disorder Have Increased Serum Levels of Neurofilaments, Neuron-Specific Enolase and S100B: Does Organic Brain Damage Exist? Sleep Medicine, 48, 163-171. https://doi.org/10.1016/j.sleep.2017.12.012 |
[23] | Liu, H., Wang, X., Chen, L., Chen, L., Tsirka, S.E., Ge, S., et al. (2021) Microglia Modulate Stable Wakefulness via the Thalamic Reticular Nucleus in Mice. Nature Communications, 12, Article No. 4646. https://doi.org/10.1038/s41467-021-24915-x |
[24] | Corsi, G., Picard, K., di Castro, M.A., Garofalo, S., Tucci, F., Chece, G., et al. (2021) Microglia Modulate Hippocampal Synaptic Transmission and Sleep Duration along the Light/dark Cycle. Glia, 70, 89-105. https://doi.org/10.1002/glia.24090 |
[25] | Pinto, M.J., Cottin, L., Dingli, F., Laigle, V., Ribeiro, L.F., Triller, A., et al. (2022) Microglial TNFα Orchestrates Protein Phosphorylation in the Cortex during the Sleep Period and Controls Homeostatic Sleep. The EMBO Journal, 42, e111485. https://doi.org/10.15252/embj.2022111485 |
[26] | Pinto, M.J., Bizien, L., Fabre, J.M.J., Ðukanović, N., Lepetz, V., Henderson, F., et al. (2024) Microglial TNFα Controls Daily Changes in Synaptic Gabaars and Sleep Slow Waves. Journal of Cell Biology, 223, e202401041. https://doi.org/10.1083/jcb.202401041 |
[27] | Ma, C., Li, B., Silverman, D., Ding, X., Li, A., Xiao, C., et al. (2024) Microglia Regulate Sleep through Calcium-Dependent Modulation of Norepinephrine Transmission. Nature Neuroscience, 27, 249-258. https://doi.org/10.1038/s41593-023-01548-5 |
[28] | Nadjar, A., Wigren, H.M. and Tremblay, M. (2017) Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders. Frontiers in Cellular Neuroscience, 11, Article No. 250. https://doi.org/10.3389/fncel.2017.00250 |
[29] | Deurveilher, S., Golovin, T., Hall, S. and Semba, K. (2021) Microglia Dynamics in Sleep/Wake States and in Response to Sleep Loss. Neurochemistry International, 143, Article ID: 104944. https://doi.org/10.1016/j.neuint.2020.104944 |
[30] | Parhizkar, S., Gent, G., Chen, Y., Rensing, N., Gratuze, M., Strout, G., et al. (2023) Sleep Deprivation Exacerbates Microglial Reactivity and Aβ Deposition in a trem2-Dependent Manner in Mice. Science Translational Medicine, 15, eade6285. https://doi.org/10.1126/scitranslmed.ade6285 |
[31] | Picard, K., Corsi, G., Decoeur, F., Di Castro, M.A., Bordeleau, M., Persillet, M., et al. (2023) Microglial Homeostasis Disruption Modulates Non-Rapid Eye Movement Sleep Duration and Neuronal Activity in Adult Female Mice. Brain, Behavior, and Immunity, 107, 153-164. https://doi.org/10.1016/j.bbi.2022.09.016 |
[32] | Sominsky, L., Dangel, T., Malik, S., De Luca, S.N., Singewald, N. and Spencer, S.J. (2020) Microglial Ablation in Rats Disrupts the Circadian System. The FASEB Journal, 35, e21195. https://doi.org/10.1096/fj.202001555rr |
[33] | Michalski, J. and Kothary, R. (2015) Oligodendrocytes in a Nutshell. Frontiers in Cellular Neuroscience, 9, Article No. 340. https://doi.org/10.3389/fncel.2015.00340 |
[34] | Bellesi, M., Pfister-Genskow, M., Maret, S., Keles, S., Tononi, G. and Cirelli, C. (2013) Effects of Sleep and Wake on Oligodendrocytes and Their Precursors. The Journal of Neuroscience, 33, 14288-14300. https://doi.org/10.1523/jneurosci.5102-12.2013 |
[35] | Rojo, D., Dal Cengio, L., Badner, A., Kim, S., Sakai, N., Greene, J., et al. (2023) BMAL1 Loss in Oligodendroglia Contributes to Abnormal Myelination and Sleep. Neuron, 111, 3604-3618.e11. https://doi.org/10.1016/j.neuron.2023.08.002 |
[36] | Colwell, C.S. and Ghiani, C.A. (2019) Potential Circadian Rhythms in Oligodendrocytes? Working Together through Time. Neurochemical Research, 45, 591-605. https://doi.org/10.1007/s11064-019-02778-5 |