|
基于多元Logistic回归分析年龄和左室射血分数对经导管主动脉瓣置换术后前降支CT冠状动脉血流储备分数变化的影响
|
Abstract:
Objective: To investigate the correlation between left ventricular ejection fraction (LVEF) and age with changes in anterior descending CT coronary flow reserve fraction (CT-FFR) before and after transcatheter aortic valve implantation (TAVI), based on references and data summaries. Methods: Seventy-eight patients with severe aortic stenosis diagnosed and treated in the Department of Cardiovascular Medicine of the Affiliated Hospital of Qingdao University from March 2019 to October 2022 were selected to detect the CT coronary flow reserve fraction of the anterior descending branches of the patients before and after transcatheter aortic replacement, and according to the pre- and post-surgery CT coronary flow reserve fractions, patients were divided into the variable group (Group I), the large group (Group II), and unchanged group (Group III), to explore the effects of left ventricular ejection fraction and age on each group. Results: Compared to Group III, in Group I, LVEF mainly influenced CT-FFR to become smaller after TAVI and played a positive role; compared to Group III, age mainly influenced CT-FFR to become larger after TAVI and played a negative role. Conclusion: LVEF and age predict changes in anterior descending CT coronary flow reserve fraction after transcatheter aortic implantation.
[1] | Min, J.K., Taylor, C.A., Achenbach, S., Koo, B.K., Leipsic, J., Nørgaard, B.L., et al. (2015) Noninvasive Fractional Flow Reserve Derived from Coronary CT Angiography: Clinical Data and Scientific Principles. JACC: Cardiovascular Imaging, 8, 1209-1222. https://doi.org/10.1016/j.jcmg.2015.08.006 |
[2] | Pijls, N.H.J. and De Bruyne, B. (1998) Coronary Pressure Measurement and Fractional Flow Reserve. Heart, 80, 539-542. https://doi.org/10.1136/hrt.80.6.539 |
[3] | De Bruyne, B., Pijls, N.H.J., Kalesan, B., Barbato, E., Tonino, P.A.L., Piroth, Z., et al. (2012) Fractional Flow Reserve-Guided PCI versus Medical Therapy in Stable Coronary Disease. New England Journal of Medicine, 367, 991-1001. https://doi.org/10.1056/nejmoa1205361 |
[4] | Johnson, N.P., Tóth, G.G., Lai, D., Zhu, H., Açar, G., Agostoni, P., et al. (2014) Prognostic Value of Fractional Flow Reserve: Linking Physiologic Severity to Clinical Outcomes. Journal of the American College of Cardiology, 64, 1641-1654. https://doi.org/10.1016/j.jacc.2014.07.973 |
[5] | Fearon, W.F., Nishi, T., De Bruyne, B., Boothroyd, D.B., Barbato, E., Tonino, P., et al. (2018) Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients with Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve versus Angiography for Multivessel Evaluation). Circulation, 137, 480-487. https://doi.org/10.1161/circulationaha.117.031907 |
[6] | Sivertsen, J., Jensen, J., Galatius, S., Raunsø, J., and Rosenmeier, J. (2014) Comparison of the Novel Vasodilator Uridine Triphosphate and Adenosine for the Measurement of Fractional Flow Reserve. Journal of Invasive Cardiology, 26, 512-518. |
[7] | Michail, M., Ihdayhid, A., Comella, A., Thakur, U., Cameron, J.D., McCormick, L.M., et al. (2021) Feasibility and Validity of Computed Tomography-Derived Fractional Flow Reserve in Patients with Severe Aortic Stenosis: The CAST-FFR Study. Circulation: Cardiovascular Interventions, 14, e009586. https://doi.org/10.1161/circinterventions.120.009586 |
[8] | Zhang, Y., Xiong, T., Li, Y., Huang, F., Peng, Y., Li, Q., et al. (2021) Variation of Computed Tomographic Angiography-based Fractional Flow Reserve after Transcatheter Aortic Valve Implantation. European Radiology, 31, 6220-6229. https://doi.org/10.1007/s00330-021-08099-y |
[9] | Baumgartner, H., Falk, V., Bax, J.J., De Bonis, M., Hamm, C., Holm, P.J., et al. (2017) 2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. European Heart Journal, 38, 2739-2791. https://doi.org/10.1093/eurheartj/ehx391 |
[10] | Patterson, T., Prendergast, B.D. and Redwood, S. (2018) PCI in TAVI Patients: Who, Why and When? EuroIntervention, 14, e1160-e1162. https://doi.org/10.4244/eijv14i11a209 |
[11] | Karlsen, S., Melichova, D., Dahlslett, T., Grenne, B., Sjøli, B., Smiseth, O., et al. (2022) Increased Deformation of the Left Ventricle during Exercise Test Measured by Global Longitudinal Strain Can Rule out Significant Coronary Artery Disease in Patients with Suspected Unstable Angina Pectoris. Echocardiography, 39, 233-239. https://doi.org/10.1111/echo.15295 |
[12] | Vasiljevic, Z., Krljanac, G., Zdravkovic, M., Lasica, R., Trifunovic, D. and Asanin, M. (2018) Coronary Microcirculation in Heart Failure with Preserved Systolic Function. Current Pharmaceutical Design, 24, 2960-2966. https://doi.org/10.2174/1381612824666180711124131 |
[13] | Anastasius, M., Maggiore, P., Huang, A., Blanke, P., Patel, M.R., Nørgaard, B.L., et al. (2021) The Clinical Utility of FFRCT Stratified by Age. Journal of Cardiovascular Computed Tomography, 15, 121-128. https://doi.org/10.1016/j.jcct.2020.08.006 |
[14] | Mejia-Renteria, H., Faria, D., Lee, J.M., Lee, S.H., Jung, J., Doh, J., et al. (2022) Association between Patient Age, Microcirculation, and Coronary Stenosis Assessment with Fractional Flow Reserve and Instantaneous Wave-Free Ratio. Catheterization and Cardiovascular Interventions, 99, 1104-1114. https://doi.org/10.1002/ccd.30092 |
[15] | Faria, D.C., Lee, J.M., van der Hoef, T., Mejía-Rentería, H., Echavarría-Pinto, M., Baptista, S.B., et al. (2021) Age and Functional Relevance of Coronary Stenosis: A Post Hoc Analysis of the ADVISE II Trial. EuroIntervention, 17, 757-764. https://doi.org/10.4244/eij-d-20-01163 |
[16] | Faria, D., Mejia-Renteria, H., Lee, J.M., Lee, S.H., Travieso, A., Jung, J., et al. (2022) Age-Related Changes in the Coronary Microcirculation Influencing the Diagnostic Performance of Invasive Pressure-Based Indices and Long-Term Patient Prognosis. Catheterization and Cardiovascular Interventions, 100, 1195-1205. https://doi.org/10.1002/ccd.30445 |
[17] | Zasada, W., Zdzierak, B., Rakowski, T., Bobrowska, B., Krawczyk-Ożóg, A., Surowiec, S., et al. (2023) The Impact of Age on the Physiological Assessment of Borderline Coronary Stenoses. Medicina, 59, Article No. 1863. https://doi.org/10.3390/medicina59101863 |