|
基于图神经网络预测药物–靶标相互作用的方法综述
|
Abstract:
药物–靶标相互作用(DTI)在药物发现中至关重要,利用人工智能模型对DTI进行预测不仅减少了时间和成本,还能够提高预测的准确性和精度。然而,DTI数据异质性的特点以及预测模型的可解释性为研究人员带来挑战。在目前的研究中,图神经网络(GNN)在分析和处理多源数据挖掘其中的复杂关系及可解释性方面具有显著的优势,是DTI预测研究的强大工具。文章从三个方面对GNN在DTI预测中的方法进行综述。首先,介绍了DTI预测的研究现状。其次,分别探讨了GNN在药物(靶标)特征提取和DTI预测的最新研究进展,整理了常用的公开数据集。最后,总结了基于GNN预测DTI研究中存在的挑战并为未来相关研究提供展望。
Drug-target interaction (DTI) is crucial in drug discovery, and utilizing artificial intelligence models to predict DTI not only reduces time and costs but also enhances prediction accuracy and precision. However, the heterogeneity of DTI data and the interpretability of prediction models pose challenges for researchers. In current research, graph neural networks (GNNs) exhibit significant advantages in analyzing and processing complex relationships among multiple data sources and enhancing interpretability, making them powerful tools in DTI prediction studies. This article provides a comprehensive review of GNN methods in DTI prediction from three aspects. Firstly, it introduces the current status of DTI prediction research. Secondly, it discusses the latest research progress of GNNs in drug (target) feature extraction and DTI prediction, and compiles commonly used public datasets. Finally, it summarizes the challenges in DTI prediction research based on GNNs and provides prospects for future related studies.
[1] | Xue, H., Li, J., Xie, H. and Wang, Y. (2018) Review of Drug Repositioning Approaches and Resources. International Journal of Biological Sciences, 14, 1232-1244. https://doi.org/10.7150/ijbs.24612 |
[2] | Mongia, A. and Majumdar, A. (2020) Drug-Target Interaction Prediction Using Multi Graph Regularized Nuclear Norm Minimization. PLOS ONE, 15, e0226484. https://doi.org/10.1371/journal.pone.0226484 |
[3] | Yao, L., Evans, J.A. and Rzhetsky, A. (2010) Novel Opportunities for Computational Biology and Sociology in Drug Discovery. Trends in Biotechnology, 28, 161-170. https://doi.org/10.1016/j.tibtech.2010.01.004 |
[4] | 张然, 王学志, 汪嘉葭, 等. 药物-靶点相互作用预测的计算方法综述[J]. 计算机工程与应用, 2023, 59(12): 1-13. |
[5] | Mei, J., Kwoh, C., Yang, P., Li, X. and Zheng, J. (2012) Drug-Target Interaction Prediction by Learning from Local Information and Neighbors. Bioinformatics, 29, 238-245. https://doi.org/10.1093/bioinformatics/bts670 |
[6] | Lee, I. and Nam, H. (2018) Identification of Drug-Target Interaction by a Random Walk with Restart Method on an Interactome Network. BMC Bioinformatics, 19, Article No. 208. https://doi.org/10.1186/s12859-018-2199-x |
[7] | Shamima, M.K., Mehedi, M.H. and Hiroyuki, K. (2019) PreAIP: Computational Prediction of Anti-Inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10, Article 129. |
[8] | Fu, G., Ding, Y., Seal, A., Chen, B., Sun, Y. and Bolton, E. (2016) Predicting Drug Target Interactions Using Meta-Path-Based Semantic Network Analysis. BMC Bioinformatics, 17, Article No. 160. https://doi.org/10.1186/s12859-016-1005-x |
[9] | Bleakley, K. and Yamanishi, Y. (2009) Supervised Prediction of Drug-Target Interactions Using Bipartite Local Models. Bioinformatics, 25, 2397-2403. https://doi.org/10.1093/bioinformatics/btp433 |
[10] | Ding, Y.J., Tang, J.J. and Guo, F. (2021) Identification of Drug-Target Interactions via Multi-View Graph Regularized Link Propagation Model. Neurocomputing, 461, 618-631. |
[11] | Zhang, Z., Zhang, X., Wu, M., Ou-Yang, L., Zhao, X. and Li, X. (2020) A Graph Regularized Generalized Matrix Factorization Model for Predicting Links in Biomedical Bipartite Networks. Bioinformatics, 36, 3474-3481. https://doi.org/10.1093/bioinformatics/btaa157 |
[12] | Ezzat, A., Zhao, P., Wu, M., Li, X. and Kwoh, C. (2017) Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14, 646-656. https://doi.org/10.1109/tcbb.2016.2530062 |
[13] | Zheng, X., He, S., Song, X., Zhang, Z. and Bo, X. (2018) DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict Drug-Target Interactions. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L. and Maglogiannis, I., Eds, Artificial Neural Networks and Machine Learning—ICANN 201, Springer, 104-114. https://doi.org/10.1007/978-3-030-01418-6_11 |
[14] | Scarselli, F., Gori, M., Chung Tsoi, A., Hagenbuchner, M. and Monfardini, G. (2009) The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20, 61-80. https://doi.org/10.1109/tnn.2008.2005605 |
[15] | Kipf, N.T. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional Networks. arXiv: 1609.02907. |
[16] | Velickovic, P., Cucurull, G., Casanova, A., et al. (2017) Graph Attention Networks. arXiv: 1710.10903. |
[17] | Dong, Y., Chawla, N.V. and Swami, A. (2017) Metapath2vec: Scalable Representation Learning for Heterogeneous Networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, 13-17 August 2017, 135-144. https://doi.org/10.1145/3097983.3098036 |
[18] | Zhao, T., Hu, Y., Valsdottir, L.R., Zang, T. and Peng, J. (2020) Identifying Drug-Target Interactions Based on Graph Convolutional Network and Deep Neural Network. Briefings in Bioinformatics, 22, 2141-2150. https://doi.org/10.1093/bib/bbaa044 |
[19] | Peng, J., Wang, Y., Guan, J., Li, J., Han, R., Hao, J., et al. (2021) An End-To-End Heterogeneous Graph Representation Learning-Based Framework for Drug-Target Interaction Prediction. Briefings in Bioinformatics, 22, bbaa430. https://doi.org/10.1093/bib/bbaa430 |
[20] | Li, Y., Qiao, G., Gao, X. and Wang, G. (2022) Supervised Graph Co-Contrastive Learning for Drug-Target Interaction Prediction. Bioinformatics, 38, 2847-2854. https://doi.org/10.1093/bioinformatics/btac164 |
[21] | Yao, K., Wang, X., Li, W., Zhu, H., Jiang, Y., Li, Y., et al. (2023) Semi-Supervised Heterogeneous Graph Contrastive Learning for Drug-Target Interaction Prediction. Computers in Biology and Medicine, 163, Article ID: 107199. https://doi.org/10.1016/j.compbiomed.2023.107199 |
[22] | Yang, C., Liu, M., He, F., Zhang, X., Peng, J. and Han, J. (2019) Similarity Modeling on Heterogeneous Networks via Automatic Path Discovery. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N. and Ifrim, G., Eds., Machine Learning and Knowledge Discovery in Databases, Springer, 37-54. https://doi.org/10.1007/978-3-030-10928-8_3 |
[23] | Su, Y., Hu, Z., Wang, F., Bin, Y., Zheng, C., Li, H., et al. (2023) AMGDTI: Drug-Target Interaction Prediction Based on Adaptive Meta-Graph Learning in Heterogeneous Network. Briefings in Bioinformatics, 25, bbad474. https://doi.org/10.1093/bib/bbad474 |
[24] | Gao, J., Gao, J., Ying, X., Lu, M. and Wang, J. (2021) Higher-Order Interaction Goes Neural: A Substructure Assembling Graph Attention Network for Graph Classification. IEEE Transactions on Knowledge and Data Engineering, 35, 1594-1608. https://doi.org/10.1109/tkde.2021.3105544 |
[25] | Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., et al. (2019) Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. The World Wide Web Conference, San Francisco, 13-17 May 2019, 2091-2102. https://doi.org/10.1145/3308558.3313442 |
[26] | Gao, H., Wang, Z. and Ji, S. (2018) Large-scale Learnable Graph Convolutional Networks. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1416-1424. https://doi.org/10.1145/3219819.3219947 |
[27] | Wang, H., Zhou, G., Liu, S., et al. (2021) Drug-Target Interaction Prediction with Graph Attention Networks. arXiv: 2107.06099. |
[28] | Li, M., Cai, X., Xu, S. and Ji, H. (2023) Metapath-Aggregated Heterogeneous Graph Neural Network for Drug-Target Interaction Prediction. Briefings in Bioinformatics, 24, bbac578. https://doi.org/10.1093/bib/bbac578 |
[29] | Li, J., Wang, J., Lv, H., Zhang, Z. and Wang, Z. (2022) IMCHGAN: Inductive Matrix Completion with Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19, 655-665. https://doi.org/10.1109/tcbb.2021.3088614 |
[30] | Jiang, L., Sun, J., Wang, Y., Ning, Q., Luo, N. and Yin, M. (2022) Identifying Drug-Target Interactions via Heterogeneous Graph Attention Networks Combined with Cross-Modal Similarities. Briefings in Bioinformatics, 23, bbac016. https://doi.org/10.1093/bib/bbac016 |
[31] | Shao, K., Zhang, Y., Wen, Y., Zhang, Z., He, S. and Bo, X. (2022) DTI-HETA: Prediction of Drug-Target Interactions Based on GCN and GAT on Heterogeneous Graph. Briefings in Bioinformatics, 23, bbac109. https://doi.org/10.1093/bib/bbac109 |
[32] | Li, Y., Qiao, G., Wang, K. and Wang, G. (2021) Drug-Target Interaction Predication via Multi-Channel Graph Neural Networks. Briefings in Bioinformatics, 23, bbab346. https://doi.org/10.1093/bib/bbab346 |
[33] | Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., et al. (2012) Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29, 82-97. https://doi.org/10.1109/msp.2012.2205597 |
[34] | Yang, B., Yih, W., He, X., et al. (2014) Embedding Entities and Relations for Learning and Inference in Knowledge Bases. arXiv: 1412.6575. |
[35] | Zhang, M. and Chen, Y. (2019) Inductive Matrix Completion Based on Graph Neural Networks. arXiv: 1904.12058. |
[36] | Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., et al. (2017) A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information. Nature Communications, 8, Article No. 573. https://doi.org/10.1038/s41467-017-00680-8 |
[37] | Zheng, Y., Peng, H., Zhang, X., Gao, X. and Li, J. (2018) Predicting Drug Targets from Heterogeneous Spaces Using Anchor Graph Hashing and Ensemble Learning. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, 8-13 July 2018, 1-7. https://doi.org/10.1109/ijcnn.2018.8489028 |
[38] | Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M. (2008) Prediction of Drug-Target Interaction Networks from the Integration of Chemical and Genomic Spaces. Bioinformatics, 24, i232-i240. https://doi.org/10.1093/bioinformatics/btn162 |