全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pulsed Modulation in Electro-Hyperthermia

DOI: 10.4236/ojbiphy.2024.144015, PP. 374-398

Keywords: Tumor, Pulsed Modulation, Nonthermal Excitation, Thermal Homeostasis, Cell-Killing, RF Current, Immunogenic Cell Death, Apoptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effects, similar to the thermal action of conventional hyperthermia combined with ionizing radiation (radiotherapy). The electric field and the radiofrequency current produced both the thermal and nonthermal processes. The thermal effects produce the elevated temperature as a thermal background to optimize the nonthermal impacts. The low frequency amplitude modulation ensures accurate targeting and promotes immunogenic cell death to develop the tumor specific memory T cells disrupting the malignant cells by immune surveillance. This process (abscopal effect) works like a vaccination. The low frequency amplitude modulation is combined in the new method with the high power pulses for short time, increasing the tumor distortion ability of the electric field. The new modulation combination has much deeper penetration triplicating the active thickness of the effective treatment. The short pulse absorption increases the safety and decreases the thermal toxicity of the treatment, making the treatment safer. The increased power allows for reduced treatment time with the prescribed dose.

References

[1]  Vaupel, P.W. and Kelleher, D.K. (1995) Metabolic Status and Reaction to Heat of Normal and Tumor Tissue. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermoradiotherapy and Thermochemotherapy, Springer, 157-176.
https://doi.org/10.1007/978-3-642-57858-8_8
[2]  Minnaar, C.A. and Szasz, A. (2022) Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells, 11, Article 1838.
https://doi.org/10.3390/cells11111838
[3]  Szasz, A. (2022) Stimulation and Control of Homeostasis. Open Journal of Biophysics, 12, 89-131.
https://doi.org/10.4236/ojbiphy.2022.122004
[4]  Feldmann, H.J., Molls, M., Hoederath, A., Krümpelmann, S. and Sack, H. (1992) Blood Flow and Steady State Temperatures in Deep-Seated Tumors and Normal Tissues. International Journal of Radiation OncologyBiologyPhysics, 23, 1003-1008.
https://doi.org/10.1016/0360-3016(92)90906-x
[5]  Hegyi, G., Vincze, G. and Szasz, A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics, 2, 64-71.
https://doi.org/10.4236/ojbiphy.2012.23009
[6]  Kao, P.H., Chen, C., Tsang, Y., Lin, C., Chiang, H., Huang, C., et al. (2020) Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Scientific Reports, 10, Article No. 8936.
https://doi.org/10.1038/s41598-020-65823-2
[7]  Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901.
https://doi.org/10.3390/cancers14040901
[8]  Beachy, S.H. and Repasky, E.A. (2011) Toward Establishment of Temperature Thresholds for Immunological Impact of Heat Exposure in Humans. International Journal of Hyperthermia, 27, 344-352.
https://doi.org/10.3109/02656736.2011.562873
[9]  Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia: Principles and Practices. Springer Science.
https://doi.org/10.1007/978-90-481-9498-8
[10]  Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17.
https://doi.org/10.4103/jrcr.jrcr_25_18
[11]  Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia. Open Journal of Biophysics, 13, 103-142.
https://doi.org/10.4236/ojbiphy.2023.134007
[12]  Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229.
https://doi.org/10.4236/ojbiphy.2017.74016
[13]  Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia. Open Journal of Biophysics, 13, 103-142.
https://doi.org/10.4236/ojbiphy.2023.134007
[14]  Agus, D.B., Alexander, J.F., Arap, W., Ashili, S., Aslan, J.E., Austin, R.H., et al. (2013) A Physical Sciences Network Characterization of Non-Tumorigenic and Metastatic Cells. Scientific Reports, 3, Article No. 1449.
https://doi.org/10.1038/srep01449
[15]  Govorov, A.O. and Richardson, H.H. (2007) Generating Heat with Metal Nanoparticles. Nano Today, 2, 30-38.
https://doi.org/10.1016/s1748-0132(07)70017-8
[16]  Dutz, S. and Hergt, R. (2013) Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy. International Journal of Hyperthermia, 29, 790-800.
https://doi.org/10.3109/02656736.2013.822993
[17]  Shen, R., Lu, L., Young, P., Shidnia, H., Hornback, N.B. and Broxmeyer, H.E. (1994) Influence of Elevated Temperature on Natural Killer Cell Activity, Lymphokine-Activated Killer Cell Activity and Lectin-Dependent Cytotoxicity of Human Umbilical Cord Blood and Adult Blood Cells. International Journal of Radiation OncologyBiologyPhysics, 29, 821-826.
https://doi.org/10.1016/0360-3016(94)90571-1
[18]  Hietanen, T., Kapanaen, M. and Kellokumpu-Legtinen, P.L. (2016) Restoring Natural Killer Cell Cytotoxicity after Hyperthermia Alone or Combined with Radiotherapy. Anticancer Research, 36, 555-564.
[19]  Repasky, E. and Issels, R. (2002) Physiological Consequences of Hyperthermia: Heat, Heat Shock Proteins and the Immune Response. International Journal of Hyperthermia, 18, 486-489.
https://doi.org/10.1080/0265673021000036531
[20]  Lee, S., Kim, J., Han, Y. and Cho, D. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. International Journal of Hyperthermia, 34, 953-960.
https://doi.org/10.1080/02656736.2018.1423709
[21]  Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia—Part I. In vitro Research. International Journal of Clinical Medicine, 15, 257-298.
https://doi.org/10.4236/ijcm.2024.157019
[22]  Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia—Part II. In vivo Research. International Journal of Clinical Medicine, 15, 299-334.
https://doi.org/10.4236/ijcm.2024.157020
[23]  Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia—Part III. Immunogenic Effects. International Journal of Clinical Medicine, 15, 335-364.
https://doi.org/10.4236/ijcm.2024.157021
[24]  Szasz, A.M., Minnaar, C.A., Szentmártoni, G., Szigeti, G.P. and Dank, M. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article 1012.
https://doi.org/10.3389/fonc.2019.01012
[25]  Lee, S., Lorant, G., Grand, L. and Szasz, A.M. (2023) The Clinical Validation of Modulated Electro-Hyperthermia (mEHT). Cancers, 15, Article 4569.
https://doi.org/10.3390/cancers15184569
[26]  Szasz, A. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia. Open Journal of Biophysics, 11, 252-313.
https://doi.org/10.4236/ojbiphy.2021.113010
[27]  Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, 323-336.
[28]  Mühlberg, K. (2021) Power Transmission of EHY-2000—A Hypothesis. Initial Publi-cation: Oncothermia Journal, 30, 104-116.
https://oncotherm.com/sites/oncotherm/files/2021-04/Muhlberg_Power_1.pdf
[29]  Mühlberg, K. (2021) Impedance Matching and Its Consequences for Modulated Electro-Hyperthermia. Initial Publication: Oncothermia Journal, 30, 83-104.
https://oncotherm.com/sites/oncotherm/files/2021-04/Muhlberg_Impedance_1.pdf
[30]  Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT), In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars Publishing, 377-415.
https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[31]  Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. Open Journal of Biophysics, 11, 314-350.
https://doi.org/10.4236/ojbiphy.2021.113011
[32]  Schwan, H.P. (1963) Determination of Biological Impedances. In: Nastuk, W.L., Ed., Electrophysiological Methods, Academic Press, 323-407.
https://doi.org/10.1016/b978-1-4831-6743-5.50013-7
[33]  Cole, K.S. (1968) Membranes, Ions and Impulses. University of California Press.
[34]  Kuang, W. and Nelson, S.O. (1998) Low-Frequency Dielectric Properties of Biological Tissues: A Review with Some New Insights. Transactions of the ASAE, 41, 173-184.
https://doi.org/10.13031/2013.17142
[35]  Astumian, R.D., Weaver, J.C. and Adair, R.K. (1995) Rectification and Signal Averaging of Weak Electric Fields by Biological Cells. Proceedings of the National Academy of Sciences, 92, 3740-3743.
https://doi.org/10.1073/pnas.92.9.3740
[36]  Sabah, N.H. (2000) Rectification in Biological Membranes. IEEE Engineering in Medicine and Biology Magazine, 19, 106-113.
https://doi.org/10.1109/51.816251
[37]  Wust, P., Kortüm, B., Strauss, U., Nadobny, J., Zschaeck, S., Beck, M., et al. (2020) Non-Thermal Effects of Radiofrequency Electromagnetic Fields. Scientific Reports, 10, Article No. 13488.
https://doi.org/10.1038/s41598-020-69561-3
[38]  Szasz, O., Szigeti, G.P., Vancsik, T. and Szasz, A. (2018) Hyperthermia Dosing and Depth of Effect. Open Journal of Biophysics, 8, 31-48.
https://doi.org/10.4236/ojbiphy.2018.81004
[39]  Lee, S., Szigeti, G. and Szasz, A. (2018) Oncological Hyperthermia: The Correct Dosing in Clinical Applications. International Journal of Oncology, 54, 627-643.
https://doi.org/10.3892/ijo.2018.4645
[40]  Szasz, O. (2019) Bioelectromagnetic Paradigm of Cancer Treatment—Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 9, 98-109.
https://doi.org/10.4236/ojbiphy.2019.92008
[41]  Szasz, O. and Szasz, A. (2016) Heating, Efficacy and Dose of Local Hyperthermia. Open Journal of Biophysics, 6, 10-18.
https://doi.org/10.4236/ojbiphy.2016.61002
[42]  Crezee, J., van Leeuwen, C.M., Oei, A.L., van Heerden, L.E., Bel, A., Stalpers, L.J.A., et al. (2016) Biological Modelling of the Radiation Dose Escalation Effect of Regional Hyperthermia in Cervical Cancer. Radiation Oncology, 11, Article No. 14.
https://doi.org/10.1186/s13014-016-0592-z
[43]  Meggyeshazi, N. (2015) Studies on Modulated Electro Hyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma Model. Ph.D Thesis, Semmelweis University.
http://repo.lib.semmelweis.hu/handle/123456789/3956
[44]  Krenacs, T., Meggyeshazi, N., Forika, G., Kiss, E., Hamar, P., Szekely, T., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, Article 6270.
https://doi.org/10.3390/ijms21176270
[45]  Szasz, O. and Szasz, A. (2021) Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology. Open Journal of Biophysics, 11, 68-132.
https://doi.org/10.4236/ojbiphy.2021.111002
[46]  Wust, P., Ghadjar, P., Nadobny, J., Beck, M., Kaul, D., Winter, L., et al. (2019) Physical Analysis of Temperature-Dependent Effects of Amplitude-Modulated Electromagnetic Hyperthermia. International Journal of Hyperthermia, 36, 1245-1253.
https://pubmed.ncbi.nlm.nih.gov/31818170/
https://doi.org/10.1080/02656736.2019.1692376
[47]  Danics, L., Schvarcz, C.A., Viana, P., Vancsik, T., Krenács, T., Benyó, Z., et al. (2020) Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice. Cancers, 12, Article 2581.
https://doi.org/10.3390/cancers12092581
[48]  Thomas, M.J., Major, E., Benedek, A., Horváth, I., Máthé, D., Bergmann, R., et al. (2020) Suppression of Metastatic Melanoma Growth in Lung by Modulated Electro-Hyperthermia Monitored by a Minimally Invasive Heat Stress Testing Approach in Mice. Cancers, 12, Article 3872.
https://doi.org/10.3390/cancers12123872
[49]  Bassingthwaighte, J.B. (1974) Organ Blood Flow, Wash-in, Washout, and Clearance of Nutrients and Metabolites. Mayo Clinic Proceedings, 49, 248-255.
[50]  Szasz, O., Szigeti, G.P. and Szasz, A. (2019) The Intrinsic Self-Time of Biosystems. Open Journal of Biophysics, 9, 131-145.
https://doi.org/10.4236/ojbiphy.2019.92010
[51]  Andresen, B., Shiner, J.S. and Uehlinger, D.E. (2002) Allometric Scaling and Maximum Efficiency in Physiological Eigen Time. Proceedings of the National Academy of Sciences, 99, 5822-5824.
https://doi.org/10.1073/pnas.082633699
[52]  Brown, J.H. and West, G.B. (2000) Scaling in Biology. Oxford University Press.
[53]  Günther, B. and Morgado, E. (2005) Allometric Scaling of Biological Rhythms in Mammals. Biological Research, 38, 207-212.
https://doi.org/10.4067/s0716-97602005000200010
[54]  Samulski, T.V., Fessenden, P., Valdagni, R. and Kapp, D.S. (1987) Correlations of Thermal Washout Rate, Steady State Temperatures, and Tissue Type in Deep Seated Recurrent or Metastatic Tumors. International Journal of Radiation OncologyBiologyPhysics, 13, 907-916.
https://doi.org/10.1016/0360-3016(87)90106-4
[55]  Andocs, G., Rehman, M.U., Zhao, Q., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. Cell Death Discovery, 2, Article No. 16039.
https://doi.org/10.1038/cddiscovery.2016.39
[56]  Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9.
https://doi.org/10.4172/0974-8369.1000247
[57]  Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Strahlentherapie und Onkologie, 185, 120-126.
https://doi.org/10.1007/s00066-009-1903-1
[58]  Portoro, I., Danics, L. and Veres, D. (2018) Increased Efficacy in Treatment of Glioma by a New Modulated Electro-Hyperthermia (mEHT) Protocol. Oncothermia Journal, 24, 344-356.
https://oncotherm.com/sites/oncotherm/files/2018-10/Increased_efficacy_in_treatment.pdf
[59]  Wang, Y.-S. (2019) Private Communication, and Presentation: Immunotherapy in Combination with Modulated Electro-Hyperthermia. 37th Conference of the International Clinical Hyperthermia Society, Thessaloniki, 19-21 September 2019.
[60]  Dutta, J. and Kundu, B. (2022) Theoretical Evaluation of Bio-Thermal Response in Human Tissue Subjected to Pulse-Laser Induced Hyperthermia Therapy for Cancer Treatment. International Journal of Thermal Sciences, 172, Article 107346.
https://doi.org/10.1016/j.ijthermalsci.2021.107346
[61]  Kuma, R., Muralitharen, S., Usman, S.M., Ramachandran, R.P., Sundararajan, R., Madhivanan, S., et al. (2009) Electrically-Enhanced Proliferation Control in Adult Human Mesenchymal Stem Cells. 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, 18-21 October 2009, 474-477.
https://doi.org/10.1109/ceidp.2009.5377703
[62]  Maxim, P.G., Carson, J.J.L., Ning, S., Knox, S.J., Boyer, A.L., Hsu, C.P., et al. (2004) Enhanced Effectiveness of Radiochemotherapy with Tirapazamine by Local Application of Electric Pulses to Tumors. Radiation Research, 162, 185-193.
https://doi.org/10.1667/rr3200
[63]  Cao, T., Le, T., Hadadian, Y. and Yoon, J. (2021) Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. International Journal of Molecular Sciences, 22, Article 8895.
https://doi.org/10.3390/ijms22168895
[64]  Janigro, D., Perju, C., Fazio, V., Hallene, K., Dini, G., Agarwal, M.K., et al. (2006) Alternating Current Electrical Stimulation Enhanced Chemotherapy: A Novel Strategy to Bypass Multidrug Resistance in Tumor Cells. BMC Cancer, 6, Article No. 72.
https://doi.org/10.1186/1471-2407-6-72
[65]  Orlacchio, R., Le Page, Y., Le Dréan, Y., Le Guével, R., Sauleau, R., Alekseev, S., et al. (2019) Millimeter-Wave Pulsed Heating in Vitro: Cell Mortality and Heat Shock Response. Scientific Reports, 9, Article No. 15249.
https://doi.org/10.1038/s41598-019-51731-7
[66]  Yaghmazadeh, O. (2023) Pulsed High-Power Radio Frequency Energy Can Cause Non-Thermal Harmful Effects on the BRAIN. IEEE Open Journal of Engineering in Medicine and Biology, 5, 50-53.
https://doi.org/10.1109/OJEMB.2024.3355301
[67]  Li, C., Lin, S. and Wan, Y. (2020) Prediction of Temperature Field and Thermal Damage of Multilayer Skin Tissues Subjected to Time-Varying Laser Heating and Fluid Cooling by a Semianalytical Method. Mathematical Problems in Engineering, 2020, Article 5074280.
https://doi.org/10.1155/2020/5074280
[68]  Chung, M., Güler, A.D. and Caterina, M.J. (2005) Biphasic Currents Evoked by Chemical or Thermal Activation of the Heat-Gated Ion Channel, TRPV3. Journal of Biological Chemistry, 280, 15928-15941.
https://doi.org/10.1074/jbc.m500596200
[69]  Ding, G., Li, K., Wang, X., Zhou, Y., Qiu, L., Tan, J., et al. (2009) Effect of Electromagnetic Pulse Exposure on Brain Micro Vascular Permeability in Rats. Biomedical and Environmental Sciences, 22, 265-268.
https://doi.org/10.1016/s0895-3988(09)60055-6
[70]  Wang, Q. (2003) The Study of Dose-Response Relationship of Pulsed Electromagnetic Radiation on Rat Blood-Brain-Barrier. Chinese Journal of Disease Control and Prevention, 7, 401-404.
[71]  Li, K., Zhang, K., Xu, S., Wang, X., Zhou, Y., Zhou, Y., et al. (2017) EMP‐Induced BBB‐Disruption Enhances Drug Delivery to Glioma and Increases Treatment Efficacy in Rats. Bioelectromagnetics, 39, 60-67.
https://doi.org/10.1002/bem.22090
[72]  Wang, S., Song, Z., Yuan, Y., Guo, G. and Kang, J. (2021) Effects of Pulse Parameters on the Temperature Distribution of a Human Head Exposed to the Electromagnetic Pulse. Scientific Reports, 11, Article No. 22938.
https://doi.org/10.1038/s41598-021-02396-8
[73]  Allen, C.B., Williamson, T.K., Norwood, S.M. and Gupta, A. (2023) Do Electrical Stimulation Devices Reduce Pain and Improve Function?—A Comparative Review. Pain and Therapy, 12, 1339-1354.
https://doi.org/10.1007/s40122-023-00554-6
[74]  Lu, C., Chen, W., Hsieh, C., Kuo, Y. and Chao, C. (2019) Thermal Cycling-Hyperthermia in Combination with Polyphenols, Epigallocatechin Gallate and Chlorogenic Acid, Exerts Synergistic Anticancer Effect against Human Pancreatic Cancer PANC-1 Cells. PLOS ONE, 14, e0217676.
https://doi.org/10.1371/journal.pone.0217676
[75]  Kim, K.S., Hernandez, D. and Lee, S.Y. (2015) Time-Multiplexed Two-Channel Capacitive Radiofrequency Hyperthermia with Nanoparticle Mediation. BioMedical Engineering OnLine, 14, Article No. 95.
https://doi.org/10.1186/s12938-015-0090-9
[76]  Guo, S., Sersa, G. and Heller, R. (2023) Editorial: Pulsed Electric Field Based Technologies for Oncology Applications. Frontiers in Oncology, 13, Article 1183900.
https://doi.org/10.3389/fonc.2023.1183900

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133