Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effects, similar to the thermal action of conventional hyperthermia combined with ionizing radiation (radiotherapy). The electric field and the radiofrequency current produced both the thermal and nonthermal processes. The thermal effects produce the elevated temperature as a thermal background to optimize the nonthermal impacts. The low frequency amplitude modulation ensures accurate targeting and promotes immunogenic cell death to develop the tumor specific memory T cells disrupting the malignant cells by immune surveillance. This process (abscopal effect) works like a vaccination. The low frequency amplitude modulation is combined in the new method with the high power pulses for short time, increasing the tumor distortion ability of the electric field. The new modulation combination has much deeper penetration triplicating the active thickness of the effective treatment. The short pulse absorption increases the safety and decreases the thermal toxicity of the treatment, making the treatment safer. The increased power allows for reduced treatment time with the prescribed dose.
References
[1]
Vaupel, P.W. and Kelleher, D.K. (1995) Metabolic Status and Reaction to Heat of Normal and Tumor Tissue. In: Seegenschmiedt, M.H., Fessenden, P. and Vernon, C.C., Eds., Thermoradiotherapy and Thermochemotherapy, Springer, 157-176. https://doi.org/10.1007/978-3-642-57858-8_8
[2]
Minnaar, C.A. and Szasz, A. (2022) Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells, 11, Article 1838. https://doi.org/10.3390/cells11111838
[3]
Szasz, A. (2022) Stimulation and Control of Homeostasis. OpenJournalofBiophysics, 12, 89-131. https://doi.org/10.4236/ojbiphy.2022.122004
[4]
Feldmann, H.J., Molls, M., Hoederath, A., Krümpelmann, S. and Sack, H. (1992) Blood Flow and Steady State Temperatures in Deep-Seated Tumors and Normal Tissues. InternationalJournalofRadiationOncology∙Biology∙Physics, 23, 1003-1008. https://doi.org/10.1016/0360-3016(92)90906-x
[5]
Hegyi, G., Vincze, G. and Szasz, A. (2012) On the Dynamic Equilibrium in Homeostasis. OpenJournalofBiophysics, 2, 64-71. https://doi.org/10.4236/ojbiphy.2012.23009
[6]
Kao, P.H., Chen, C., Tsang, Y., Lin, C., Chiang, H., Huang, C., etal. (2020) Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. ScientificReports, 10, Article No. 8936. https://doi.org/10.1038/s41598-020-65823-2
[7]
Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901. https://doi.org/10.3390/cancers14040901
[8]
Beachy, S.H. and Repasky, E.A. (2011) Toward Establishment of Temperature Thresholds for Immunological Impact of Heat Exposure in Humans. InternationalJournalofHyperthermia, 27, 344-352. https://doi.org/10.3109/02656736.2011.562873
[9]
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia: Principles and Practices. Springer Science. https://doi.org/10.1007/978-90-481-9498-8
[10]
Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. JournalofRadiationandCancerResearch, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
[11]
Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia. OpenJournalofBiophysics, 13, 103-142. https://doi.org/10.4236/ojbiphy.2023.134007
[12]
Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). OpenJournalofBiophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
[13]
Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia. OpenJournalofBiophysics, 13, 103-142. https://doi.org/10.4236/ojbiphy.2023.134007
[14]
Agus, D.B., Alexander, J.F., Arap, W., Ashili, S., Aslan, J.E., Austin, R.H., etal. (2013) A Physical Sciences Network Characterization of Non-Tumorigenic and Metastatic Cells. ScientificReports, 3, Article No. 1449. https://doi.org/10.1038/srep01449
[15]
Govorov, A.O. and Richardson, H.H. (2007) Generating Heat with Metal Nanoparticles. NanoToday, 2, 30-38. https://doi.org/10.1016/s1748-0132(07)70017-8
[16]
Dutz, S. and Hergt, R. (2013) Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy. InternationalJournalofHyperthermia, 29, 790-800. https://doi.org/10.3109/02656736.2013.822993
[17]
Shen, R., Lu, L., Young, P., Shidnia, H., Hornback, N.B. and Broxmeyer, H.E. (1994) Influence of Elevated Temperature on Natural Killer Cell Activity, Lymphokine-Activated Killer Cell Activity and Lectin-Dependent Cytotoxicity of Human Umbilical Cord Blood and Adult Blood Cells. InternationalJournalofRadiationOncology∙Biology∙Physics, 29, 821-826. https://doi.org/10.1016/0360-3016(94)90571-1
[18]
Hietanen, T., Kapanaen, M. and Kellokumpu-Legtinen, P.L. (2016) Restoring Natural Killer Cell Cytotoxicity after Hyperthermia Alone or Combined with Radiotherapy. Anticancer Research, 36, 555-564.
[19]
Repasky, E. and Issels, R. (2002) Physiological Consequences of Hyperthermia: Heat, Heat Shock Proteins and the Immune Response. InternationalJournalofHyperthermia, 18, 486-489. https://doi.org/10.1080/0265673021000036531
[20]
Lee, S., Kim, J., Han, Y. and Cho, D. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. InternationalJournalofHyperthermia, 34, 953-960. https://doi.org/10.1080/02656736.2018.1423709
[21]
Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia—Part I. Invitro Research. International JournalofClinicalMedicine, 15, 257-298. https://doi.org/10.4236/ijcm.2024.157019
[22]
Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia—Part II. Invivo Research. InternationalJournalofClinicalMedicine, 15, 299-334. https://doi.org/10.4236/ijcm.2024.157020
[23]
Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia—Part III. Immunogenic Effects. InternationalJournalofClinicalMedicine, 15, 335-364. https://doi.org/10.4236/ijcm.2024.157021
[24]
Szasz, A.M., Minnaar, C.A., Szentmártoni, G., Szigeti, G.P. and Dank, M. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. FrontiersinOncology, 9, Article 1012. https://doi.org/10.3389/fonc.2019.01012
[25]
Lee, S., Lorant, G., Grand, L. and Szasz, A.M. (2023) The Clinical Validation of Modulated Electro-Hyperthermia (mEHT). Cancers, 15, Article 4569. https://doi.org/10.3390/cancers15184569
[26]
Szasz, A. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia. Open Journal of Biophysics, 11, 252-313. https://doi.org/10.4236/ojbiphy.2021.113010
[27]
Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagneticand Subtle Energy Medicine, CRC Press, 323-336.
[28]
Mühlberg, K. (2021) Power Transmission of EHY-2000—A Hypothesis. Initial Publi-cation: OncothermiaJournal, 30, 104-116. https://oncotherm.com/sites/oncotherm/files/2021-04/Muhlberg_Power_1.pdf
[29]
Mühlberg, K. (2021) Impedance Matching and Its Consequences for Modulated Electro-Hyperthermia. Initial Publication: OncothermiaJournal, 30, 83-104. https://oncotherm.com/sites/oncotherm/files/2021-04/Muhlberg_Impedance_1.pdf
[30]
Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT), In: Szasz, A., Ed., Challengesand Solutions of Oncological Hyperthermia, Cambridge Scholars Publishing, 377-415. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[31]
Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. OpenJournalofBiophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011
Cole, K.S. (1968) Membranes, Ions and Impulses. University of California Press.
[34]
Kuang, W. and Nelson, S.O. (1998) Low-Frequency Dielectric Properties of Biological Tissues: A Review with Some New Insights. TransactionsoftheASAE, 41, 173-184. https://doi.org/10.13031/2013.17142
[35]
Astumian, R.D., Weaver, J.C. and Adair, R.K. (1995) Rectification and Signal Averaging of Weak Electric Fields by Biological Cells. ProceedingsoftheNationalAcademyofSciences, 92, 3740-3743. https://doi.org/10.1073/pnas.92.9.3740
Szasz, O., Szigeti, G.P., Vancsik, T. and Szasz, A. (2018) Hyperthermia Dosing and Depth of Effect. OpenJournalofBiophysics, 8, 31-48. https://doi.org/10.4236/ojbiphy.2018.81004
[39]
Lee, S., Szigeti, G. and Szasz, A. (2018) Oncological Hyperthermia: The Correct Dosing in Clinical Applications. International Journal of Oncology, 54, 627-643. https://doi.org/10.3892/ijo.2018.4645
[40]
Szasz, O. (2019) Bioelectromagnetic Paradigm of Cancer Treatment—Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 9, 98-109. https://doi.org/10.4236/ojbiphy.2019.92008
[41]
Szasz, O. and Szasz, A. (2016) Heating, Efficacy and Dose of Local Hyperthermia. OpenJournalofBiophysics, 6, 10-18. https://doi.org/10.4236/ojbiphy.2016.61002
[42]
Crezee, J., van Leeuwen, C.M., Oei, A.L., van Heerden, L.E., Bel, A., Stalpers, L.J.A., etal. (2016) Biological Modelling of the Radiation Dose Escalation Effect of Regional Hyperthermia in Cervical Cancer. RadiationOncology, 11, Article No. 14. https://doi.org/10.1186/s13014-016-0592-z
[43]
Meggyeshazi, N. (2015) Studies on Modulated Electro Hyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma Model. Ph.D Thesis, Semmelweis University. http://repo.lib.semmelweis.hu/handle/123456789/3956
[44]
Krenacs, T., Meggyeshazi, N., Forika, G., Kiss, E., Hamar, P., Szekely, T., etal. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. InternationalJournalofMolecularSciences, 21, Article 6270. https://doi.org/10.3390/ijms21176270
[45]
Szasz, O. and Szasz, A. (2021) Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology. OpenJournalofBiophysics, 11, 68-132. https://doi.org/10.4236/ojbiphy.2021.111002
[46]
Wust, P., Ghadjar, P., Nadobny, J., Beck, M., Kaul, D., Winter, L., etal. (2019) Physical Analysis of Temperature-Dependent Effects of Amplitude-Modulated Electromagnetic Hyperthermia. InternationalJournalofHyperthermia, 36, 1245-1253. https://pubmed.ncbi.nlm.nih.gov/31818170/ https://doi.org/10.1080/02656736.2019.1692376
[47]
Danics, L., Schvarcz, C.A., Viana, P., Vancsik, T., Krenács, T., Benyó, Z., etal. (2020) Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice. Cancers, 12, Article 2581. https://doi.org/10.3390/cancers12092581
[48]
Thomas, M.J., Major, E., Benedek, A., Horváth, I., Máthé, D., Bergmann, R., etal. (2020) Suppression of Metastatic Melanoma Growth in Lung by Modulated Electro-Hyperthermia Monitored by a Minimally Invasive Heat Stress Testing Approach in Mice. Cancers, 12, Article 3872. https://doi.org/10.3390/cancers12123872
[49]
Bassingthwaighte, J.B. (1974) Organ Blood Flow, Wash-in, Washout, and Clearance of Nutrients and Metabolites. Mayo Clinic Proceedings, 49, 248-255.
[50]
Szasz, O., Szigeti, G.P. and Szasz, A. (2019) The Intrinsic Self-Time of Biosystems. Open Journal of Biophysics, 9, 131-145. https://doi.org/10.4236/ojbiphy.2019.92010
[51]
Andresen, B., Shiner, J.S. and Uehlinger, D.E. (2002) Allometric Scaling and Maximum Efficiency in Physiological Eigen Time. ProceedingsoftheNationalAcademyofSciences, 99, 5822-5824. https://doi.org/10.1073/pnas.082633699
[52]
Brown, J.H. and West, G.B. (2000) Scaling in Biology. Oxford University Press.
[53]
Günther, B. and Morgado, E. (2005) Allometric Scaling of Biological Rhythms in Mammals. BiologicalResearch, 38, 207-212. https://doi.org/10.4067/s0716-97602005000200010
[54]
Samulski, T.V., Fessenden, P., Valdagni, R. and Kapp, D.S. (1987) Correlations of Thermal Washout Rate, Steady State Temperatures, and Tissue Type in Deep Seated Recurrent or Metastatic Tumors. InternationalJournalofRadiationOncology∙Biology∙Physics, 13, 907-916. https://doi.org/10.1016/0360-3016(87)90106-4
[55]
Andocs, G., Rehman, M.U., Zhao, Q., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. Cell Death Discovery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39
[56]
Andocs, G., Rehman, M.U., Zhao, Q.L., Papp, E., Kondo, T. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9. https://doi.org/10.4172/0974-8369.1000247
[57]
Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. StrahlentherapieundOnkologie, 185, 120-126. https://doi.org/10.1007/s00066-009-1903-1
[58]
Portoro, I., Danics, L. and Veres, D. (2018) Increased Efficacy in Treatment of Glioma by a New Modulated Electro-Hyperthermia (mEHT) Protocol. OncothermiaJournal, 24, 344-356. https://oncotherm.com/sites/oncotherm/files/2018-10/Increased_efficacy_in_treatment.pdf
[59]
Wang, Y.-S. (2019) Private Communication, and Presentation: Immunotherapy in Combination with Modulated Electro-Hyperthermia. 37thConferenceoftheInternationalClinicalHyperthermiaSociety, Thessaloniki, 19-21 September 2019.
[60]
Dutta, J. and Kundu, B. (2022) Theoretical Evaluation of Bio-Thermal Response in Human Tissue Subjected to Pulse-Laser Induced Hyperthermia Therapy for Cancer Treatment. InternationalJournalofThermalSciences, 172, Article 107346. https://doi.org/10.1016/j.ijthermalsci.2021.107346
[61]
Kuma, R., Muralitharen, S., Usman, S.M., Ramachandran, R.P., Sundararajan, R., Madhivanan, S., etal. (2009) Electrically-Enhanced Proliferation Control in Adult Human Mesenchymal Stem Cells. 2009 IEEEConferenceonElectricalInsulationandDielectricPhenomena, Virginia Beach, 18-21 October 2009, 474-477. https://doi.org/10.1109/ceidp.2009.5377703
[62]
Maxim, P.G., Carson, J.J.L., Ning, S., Knox, S.J., Boyer, A.L., Hsu, C.P., etal. (2004) Enhanced Effectiveness of Radiochemotherapy with Tirapazamine by Local Application of Electric Pulses to Tumors. RadiationResearch, 162, 185-193. https://doi.org/10.1667/rr3200
[63]
Cao, T., Le, T., Hadadian, Y. and Yoon, J. (2021) Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. InternationalJournalofMolecularSciences, 22, Article 8895. https://doi.org/10.3390/ijms22168895
[64]
Janigro, D., Perju, C., Fazio, V., Hallene, K., Dini, G., Agarwal, M.K., etal. (2006) Alternating Current Electrical Stimulation Enhanced Chemotherapy: A Novel Strategy to Bypass Multidrug Resistance in Tumor Cells. BMCCancer, 6, Article No. 72. https://doi.org/10.1186/1471-2407-6-72
[65]
Orlacchio, R., Le Page, Y., Le Dréan, Y., Le Guével, R., Sauleau, R., Alekseev, S., etal. (2019) Millimeter-Wave Pulsed Heating in Vitro: Cell Mortality and Heat Shock Response. ScientificReports, 9, Article No. 15249. https://doi.org/10.1038/s41598-019-51731-7
[66]
Yaghmazadeh, O. (2023) Pulsed High-Power Radio Frequency Energy Can Cause Non-Thermal Harmful Effects on the BRAIN. IEEE Open Journal of Engineering in Medicine and Biology, 5, 50-53. https://doi.org/10.1109/OJEMB.2024.3355301
[67]
Li, C., Lin, S. and Wan, Y. (2020) Prediction of Temperature Field and Thermal Damage of Multilayer Skin Tissues Subjected to Time-Varying Laser Heating and Fluid Cooling by a Semianalytical Method. MathematicalProblemsinEngineering, 2020, Article 5074280. https://doi.org/10.1155/2020/5074280
[68]
Chung, M., Güler, A.D. and Caterina, M.J. (2005) Biphasic Currents Evoked by Chemical or Thermal Activation of the Heat-Gated Ion Channel, TRPV3. JournalofBiologicalChemistry, 280, 15928-15941. https://doi.org/10.1074/jbc.m500596200
[69]
Ding, G., Li, K., Wang, X., Zhou, Y., Qiu, L., Tan, J., etal. (2009) Effect of Electromagnetic Pulse Exposure on Brain Micro Vascular Permeability in Rats. BiomedicalandEnvironmentalSciences, 22, 265-268. https://doi.org/10.1016/s0895-3988(09)60055-6
[70]
Wang, Q. (2003) The Study of Dose-Response Relationship of Pulsed Electromagnetic Radiation on Rat Blood-Brain-Barrier. Chinese Journal of Disease Control and Prevention, 7, 401-404.
[71]
Li, K., Zhang, K., Xu, S., Wang, X., Zhou, Y., Zhou, Y., etal. (2017) EMP‐Induced BBB‐Disruption Enhances Drug Delivery to Glioma and Increases Treatment Efficacy in Rats. Bioelectromagnetics, 39, 60-67. https://doi.org/10.1002/bem.22090
[72]
Wang, S., Song, Z., Yuan, Y., Guo, G. and Kang, J. (2021) Effects of Pulse Parameters on the Temperature Distribution of a Human Head Exposed to the Electromagnetic Pulse. ScientificReports, 11, Article No. 22938. https://doi.org/10.1038/s41598-021-02396-8
[73]
Allen, C.B., Williamson, T.K., Norwood, S.M. and Gupta, A. (2023) Do Electrical Stimulation Devices Reduce Pain and Improve Function?—A Comparative Review. PainandTherapy, 12, 1339-1354. https://doi.org/10.1007/s40122-023-00554-6
[74]
Lu, C., Chen, W., Hsieh, C., Kuo, Y. and Chao, C. (2019) Thermal Cycling-Hyperthermia in Combination with Polyphenols, Epigallocatechin Gallate and Chlorogenic Acid, Exerts Synergistic Anticancer Effect against Human Pancreatic Cancer PANC-1 Cells. PLOSONE, 14, e0217676. https://doi.org/10.1371/journal.pone.0217676
[75]
Kim, K.S., Hernandez, D. and Lee, S.Y. (2015) Time-Multiplexed Two-Channel Capacitive Radiofrequency Hyperthermia with Nanoparticle Mediation. BioMedicalEngineeringOnLine, 14, Article No. 95. https://doi.org/10.1186/s12938-015-0090-9
[76]
Guo, S., Sersa, G. and Heller, R. (2023) Editorial: Pulsed Electric Field Based Technologies for Oncology Applications. FrontiersinOncology, 13, Article 1183900. https://doi.org/10.3389/fonc.2023.1183900