A two-compartment model of the universe is proposed to further refine Albert Einstein’s insight into curvature of space and the energy tensor. The two compartments are energy contained by a shell prism. The model allows for a non-unification of fundamental forces with gravity resulting from the curvature of a space-time prism. Carrier forces travel within the prism and particles emerge from the prism. Giving a thickness to the manifold negates infinity and will allow solutions at both microscopic and cosmic levels. Geometry is the link between quantum mechanics and general relativity. Negative entropy, as proposed by Erwin Schr?dinger, gives order to particles and the cosmic. The source of this energy is in the shell of the containment vessel. The acceleration of the expansion of the universe occurred when energy within the container transformed into mass, warping the space-time container and causing an explosion of the container. Star movement is explained by the surface tension of the prism of space-time.
References
[1]
Rubin, V.C., Thonnard, N. and Ford Jr., W.K. (1980) Rotational Properties of 21 SC Galaxies with a Large Range of Luminosities and Radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). TheAstrophysicalJournal, 238, 471-487. https://doi.org/10.1086/158003
[2]
Rubin, V.C. (1983) Dark Matter in Spiral Galaxies. ScientificAmerican, 248, 96-108. https://doi.org/10.1038/scientificamerican0683-96
[3]
Arkani-Hamed, N., Finkbeiner, D.P., Slatyer, T.R. and Weiner, N. (2009) A Theory of Dark Matter. PhysicalReviewD, 79, Article ID: 015014. https://doi.org/10.1103/physrevd.79.015014
[4]
Bertone, G. and Tait, T.M.P. (2018) A New Era in the Search for Dark Matter. Nature, 562, 51-56. https://doi.org/10.1038/s41586-018-0542-z
[5]
Misiaszek, M. and Rossi, N. (2024) Direct Detection of Dark Matter: A Critical Review. Symmetry, 16, Article 201. https://doi.org/10.3390/sym16020201
[6]
Aprile, E., Aalbers, J., Abe, K., Ahmed Maouloud, S., Althueser, L., Andrieu, B., et al. (2024) The XENONnT Dark Matter Experiment. TheEuropeanPhysicalJournalC, 84, Article No. 784. https://doi.org/10.1140/epjc/s10052-024-12982-5
[7]
Aldrovandi, R. (2006) Gravity and the Quantum: Are They Reconcilable? AIP Conference Proceedings, 810, 217-228. https://doi.org/10.1063/1.2158724
[8]
Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. AnnalenderPhysik, 322, 891-921. https://doi.org/10.1002/andp.19053221004
[9]
Einstein, A. (1917) On the Special and General Theory of Relativity. CPAE (English Translation), 6, 247-420.
[10]
Riemann, B. (2016) On the Hypotheses Which Lie at the Bases of Geometry. Birkhäuser Cham.
[11]
Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie der Wissenschaften.
[12]
Kaluza, T. (1921) Zum unitätsproblem der physik. arXiv: 1803.08616.
[13]
Klein, O. (1991) Quantum Theory and Five-Dimensional Relativity Theory. In: Ekspong, G., Ed., TheOskarKleinMemorialLectures, World Scientific, 67-80. https://doi.org/10.1142/9789814368728_0006
[14]
Witten, E. (1995) String Theory Dynamics in Various Dimensions. Nuclear Physics B, 443, 85-126. https://doi.org/10.1016/0550-3213(95)00158-o
[15]
Everett, H., Wheeler, J.A., DeWitt, B.S., Cooper, L.N., Van Vechten, D., Gra-ham, N., DeWitt, B. and Neill, G.R. (1973) The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press.
[16]
Schrödinger, E. (1944) What Is Life?: The Physical Aspect of the Living Cell. Cambridge University Press.
[17]
Houck, P.D. (2014) Should Negative Entropy Be Included in the Fundamental Laws of Biology? OA Biology, 2, Article No. 7.
[18]
Houck, P.D. (2020) Making Drug Discovery More Efficient Applying Statistical Entropy to Biology. JournalofModernPhysics, 11, 1969-1976. https://doi.org/10.4236/jmp.2020.1112124
[19]
Ravi, K., Chatterjee, A., Jana, B. and Bandyopadhyay, A. (2023) Investigating the Accelerated Expansion of the Universe through Updated Constraints on Viable f(R) Models within the Metric Formalism. MonthlyNoticesoftheRoyalAstronomicalSociety, 527, 7626-7651. https://doi.org/10.1093/mnras/stad3705
[20]
Glazebrook, K., Nanayakkara, T., Schreiber, C., Lagos, C., Kawinwanichakij, L., Jacobs, C., et al. (2024) A Massive Galaxy That Formed Its Stars at Z ≈ 11. Nature, 628, 277-281. https://doi.org/10.1038/s41586-024-07191-9
[21]
Misiaszek, M. and Rossi, N. (2024) Direct Detection of Dark Matter: A Critical Review. Symmetry, 16, Article 201. https://doi.org/10.3390/sym16020201
[22]
Xu, F. and Hooper, D. (2024) Dark Matter Discovery Potential of the Advanced Particle-Astrophysics Telescope. PhysicalReviewD, 109, Article ID: 083032. https://doi.org/10.1103/physrevd.109.083032
[23]
Shlivko, D. and Steinhardt, P.J. (2024) Assessing Observational Constraints on Dark Energy. PhysicsLettersB, 855, Article ID: 138826. https://doi.org/10.1016/j.physletb.2024.138826
[24]
Adil, S.A., Akarsu, Ö., Di Valentino, E., Nunes, R.C., Özülker, E., Sen, A.A., et al. (2024) Omnipotent Dark Energy: A Phenomenological Answer to the Hubble Tension. PhysicalReviewD, 109, Article ID: 023527. https://doi.org/10.1103/physrevd.109.023527