全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Star Movement Is Not Predicted Two-Compartment Model of the Universe

DOI: 10.4236/jmp.2024.1511073, PP. 1679-1689

Keywords: Two-Compartment Model, Negative Entropy, Geometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

A two-compartment model of the universe is proposed to further refine Albert Einstein’s insight into curvature of space and the energy tensor. The two compartments are energy contained by a shell prism. The model allows for a non-unification of fundamental forces with gravity resulting from the curvature of a space-time prism. Carrier forces travel within the prism and particles emerge from the prism. Giving a thickness to the manifold negates infinity and will allow solutions at both microscopic and cosmic levels. Geometry is the link between quantum mechanics and general relativity. Negative entropy, as proposed by Erwin Schr?dinger, gives order to particles and the cosmic. The source of this energy is in the shell of the containment vessel. The acceleration of the expansion of the universe occurred when energy within the container transformed into mass, warping the space-time container and causing an explosion of the container. Star movement is explained by the surface tension of the prism of space-time.

References

[1]  Rubin, V.C., Thonnard, N. and Ford Jr., W.K. (1980) Rotational Properties of 21 SC Galaxies with a Large Range of Luminosities and Radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). The Astrophysical Journal, 238, 471-487.
https://doi.org/10.1086/158003
[2]  Rubin, V.C. (1983) Dark Matter in Spiral Galaxies. Scientific American, 248, 96-108.
https://doi.org/10.1038/scientificamerican0683-96
[3]  Arkani-Hamed, N., Finkbeiner, D.P., Slatyer, T.R. and Weiner, N. (2009) A Theory of Dark Matter. Physical Review D, 79, Article ID: 015014.
https://doi.org/10.1103/physrevd.79.015014
[4]  Bertone, G. and Tait, T.M.P. (2018) A New Era in the Search for Dark Matter. Nature, 562, 51-56.
https://doi.org/10.1038/s41586-018-0542-z
[5]  Misiaszek, M. and Rossi, N. (2024) Direct Detection of Dark Matter: A Critical Review. Symmetry, 16, Article 201.
https://doi.org/10.3390/sym16020201
[6]  Aprile, E., Aalbers, J., Abe, K., Ahmed Maouloud, S., Althueser, L., Andrieu, B., et al. (2024) The XENONnT Dark Matter Experiment. The European Physical Journal C, 84, Article No. 784.
https://doi.org/10.1140/epjc/s10052-024-12982-5
[7]  Aldrovandi, R. (2006) Gravity and the Quantum: Are They Reconcilable? AIP Conference Proceedings, 810, 217-228.
https://doi.org/10.1063/1.2158724
[8]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921.
https://doi.org/10.1002/andp.19053221004
[9]  Einstein, A. (1917) On the Special and General Theory of Relativity. CPAE (English Translation), 6, 247-420.
[10]  Riemann, B. (2016) On the Hypotheses Which Lie at the Bases of Geometry. Birkhäuser Cham.
[11]  Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie der Wissenschaften.
[12]  Kaluza, T. (1921) Zum unitätsproblem der physik. arXiv: 1803.08616.
[13]  Klein, O. (1991) Quantum Theory and Five-Dimensional Relativity Theory. In: Ekspong, G., Ed., The Oskar Klein Memorial Lectures, World Scientific, 67-80.
https://doi.org/10.1142/9789814368728_0006
[14]  Witten, E. (1995) String Theory Dynamics in Various Dimensions. Nuclear Physics B, 443, 85-126.
https://doi.org/10.1016/0550-3213(95)00158-o
[15]  Everett, H., Wheeler, J.A., DeWitt, B.S., Cooper, L.N., Van Vechten, D., Gra-ham, N., DeWitt, B. and Neill, G.R. (1973) The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press.
[16]  Schrödinger, E. (1944) What Is Life?: The Physical Aspect of the Living Cell. Cambridge University Press.
[17]  Houck, P.D. (2014) Should Negative Entropy Be Included in the Fundamental Laws of Biology? OA Biology, 2, Article No. 7.
[18]  Houck, P.D. (2020) Making Drug Discovery More Efficient Applying Statistical Entropy to Biology. Journal of Modern Physics, 11, 1969-1976.
https://doi.org/10.4236/jmp.2020.1112124
[19]  Ravi, K., Chatterjee, A., Jana, B. and Bandyopadhyay, A. (2023) Investigating the Accelerated Expansion of the Universe through Updated Constraints on Viable f(R) Models within the Metric Formalism. Monthly Notices of the Royal Astronomical Society, 527, 7626-7651.
https://doi.org/10.1093/mnras/stad3705
[20]  Glazebrook, K., Nanayakkara, T., Schreiber, C., Lagos, C., Kawinwanichakij, L., Jacobs, C., et al. (2024) A Massive Galaxy That Formed Its Stars at Z ≈ 11. Nature, 628, 277-281.
https://doi.org/10.1038/s41586-024-07191-9
[21]  Misiaszek, M. and Rossi, N. (2024) Direct Detection of Dark Matter: A Critical Review. Symmetry, 16, Article 201.
https://doi.org/10.3390/sym16020201
[22]  Xu, F. and Hooper, D. (2024) Dark Matter Discovery Potential of the Advanced Particle-Astrophysics Telescope. Physical Review D, 109, Article ID: 083032.
https://doi.org/10.1103/physrevd.109.083032
[23]  Shlivko, D. and Steinhardt, P.J. (2024) Assessing Observational Constraints on Dark Energy. Physics Letters B, 855, Article ID: 138826.
https://doi.org/10.1016/j.physletb.2024.138826
[24]  Adil, S.A., Akarsu, Ö., Di Valentino, E., Nunes, R.C., Özülker, E., Sen, A.A., et al. (2024) Omnipotent Dark Energy: A Phenomenological Answer to the Hubble Tension. Physical Review D, 109, Article ID: 023527.
https://doi.org/10.1103/physrevd.109.023527

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133