全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于格子玻尔兹曼方法的多孔材料导热模拟
Simulation of Thermal Conductivity of Porous Materials Based on Lattice Boltzmann Method

DOI: 10.12677/nst.2024.124028, PP. 282-292

Keywords: 多孔材料,格子玻尔兹曼方法,等效导热系数,数值重构
Porous Material
, Lattice Boltzmann Method, Equivalent Thermal Conductivity, Numerical Reconstruction

Full-Text   Cite this paper   Add to My Lib

Abstract:

多孔材料作为一种新型材料,因其轻质、高导热等特性应用于多个领域。对于多孔材料进行数值重构,并研究其传热特性对工程应用具有重要意义。本文根据多孔材料内部的复杂结构进行建模,应用格子玻尔兹曼方法计算多孔材料的等效导热系数,进行算法验证,并分析网格数目和两相导热系数比对等效导热系数计算结果的影响。其中,等效导热系数模拟结果会在一定网格区间内趋于准确,并且两相导热系数比越大,等效导热系数变化越平稳,趋于定值。
As a new kind of material, porous material is applied in many fields because of its light weight and high thermal conductivity. The numerical reconstruction of porous materials and the study of their heat transfer characteristics are of great significance for engineering applications. In this paper, the complex structure of porous material is modeled, and the lattice Ludwig Boltzmann method is used to calculate the effective thermal conductivity of porous material, validate the algorithm, and analyze the influence of mesh number and two-phase thermal conductivity ratio on the calculation results of equivalent thermal conductivity. The simulation results of equivalent thermal conductivity tend to be accurate in a certain grid range, and the higher the two-phase thermal conductivity ratio, the more stable the change of equivalent thermal conductivity, tending to a fixed value.

References

[1]  El-Genk, M.S. (2008) Space Nuclear Reactor Power System Concepts with Static and Dynamic Energy Conversion. Energy Conversion and Management, 49, 402-411.
https://doi.org/10.1016/j.enconman.2007.10.014
[2]  曹敏, 张书, 周建民, 王永刚. 炭素泡沫材料的制备和应用[J]. 材料科学与工程学报, 2004, 22(4): 613-616.
[3]  Calmidi, V.V. and Mahajan, R.L. (1999) The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams. Journal of Heat Transfer, 121, 466-471.
https://doi.org/10.1115/1.2826001
[4]  Boomsma, K. and Poulikakos, D. (2001) On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam. International Journal of Heat and Mass Transfer, 44, 827-836.
https://doi.org/10.1016/s0017-9310(00)00123-x
[5]  Klett, J.W., McMillan, A.D., Gallego, N.C. and Walls, C.A. (2004) The Role of Structure on the Thermal Properties of Graphitic Foams. Journal of Materials Science, 39, 3659-3676.
https://doi.org/10.1023/b:jmsc.0000030719.80262.f8
[6]  张赛, 陈君若, 刘美红, 等. 不完全分形多孔介质热导率模型[J]. 农业机械学报, 2014, 45(8): 220-224.
[7]  李仁民, 刘松玉, 方磊, 等. 采用随机生长四参数生成法构造黏土微观结构[J]. 浙江大学学报(工学版), 2010, 44(10): 1897-1901.
[8]  马强, 陈俊, 陈振乾. 分形多孔介质传热传质过程的格子Boltzmann模拟[J]. 化工学报, 2014, 65(S1): 180-187.
[9]  毛煜东, 王先征, 赵国晨, 等. 纳米薄膜受超快激光作用下二维传热数值模拟[J]. 山东建筑大学学报, 2022, 37(6): 37-45.
[10]  曹海亮, 刘红贝, 张子阳, 等. 基于LBM的低导热材料板强化沸腾换热机理分析[J]. 郑州大学学报(工学版), 2024, 45(3): 103-110.
[11]  阙云, 邱婷, 蔡沛辰, 等. 基于QSGS法3D重构土体渗流场的LBM数值模拟[J]. 湖南大学学报(自然科学版), 2023, 50(9): 119-130.
[12]  唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质[J]. 物理学报, 2021, 70(5): 205-213.
[13]  张艳勇, 陈宝明, 李佳阳. 基于LBM研究骨架对相变材料融化蓄热的影响[J]. 山东建筑大学学报, 2020, 35(2): 53-61+75.
[14]  蒋琪莲. 空间核动力用多孔材料传热特性的数值研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2023.
[15]  林诒睿. 气凝胶纳米复合隔热材料导热特性的格子Boltzmann方法模拟[D]: [硕士学位论文]. 吉林: 东北电力大学, 2023.
[16]  Wang, M., Wang, J., Pan, N. and Chen, S. (2007) Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media. Physical Review E, 75, Article ID: 036702.
https://doi.org/10.1103/physreve.75.036702
[17]  Lee, H.J. and Taylor, R.E. (1976) Thermal Diffusivity of Dispersed Composites. Journal of Applied Physics, 47, 148-151.
https://doi.org/10.1063/1.322335
[18]  Wang, M. and Pan, N. (2008) Predictions of Effective Physical Properties of Complex Multiphase Materials. Materials Science and Engineering: R: Reports, 63, 1-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133