|
Mine Engineering 2024
基于LSTM神经网络的致密气井产水量预测方法研究
|
Abstract:
近年来,机器学习在石油领域中得到了广泛应用,现采用LSTM神经网络模型对致密气井产水量进行预测研究。以某气藏P101-2H井组为例,选取了油管压力、套管压力、套管温度和日产气量4种影响因素作为特征输入变量,以日产水量作为目标输出变量,对数据集进行预处理和特征选择。基于数据预处理的结果将数据集划分为训练集和验证集,结合超参数和训练集数据,进行LSTM模型的训练,模型在验证集上的准确性和可靠性表现较佳。该方法具有一定的实用价值,能够降低致密气井产水量预测的工作难度,从而对产水气井进行优化配产以控制或减缓气藏水侵。
In recent years, machine learning has been widely used in the petroleum field, and now the LSTM neural network model is used to predict the water production of tight gas wells. Taking the P101-2H well group in a gas reservoir as an example, four influencing factors, namely, tubing pressure, casing pressure, casing temperature and daily gas production, were selected as feature input variables, and daily water production was taken as the target output variable, so that the data set was preprocessed and feature selection was carried out. Based on the results of data preprocessing, the dataset is divided into training set and validation set, combining the hyperparameters and training set data, the LSTM model is trained, and the model performs better in terms of accuracy and reliability on the validation set. The method has some practical value and can reduce the work difficulty of water production prediction in tight gas wells, so as to optimize the production allocation of water-producing gas wells to control or slow down the reservoir water intrusion.
[1] | 宋佳, 唐善杰. 基于机器学习的火驱产油量主控因素筛选[J]. 精细石油化工进展, 2023, 24(2): 44-48. |
[2] | 刘世常, 李闽, 巫扬, 等. 计算水驱气藏地质储量和水侵量的简便方法[J]. 新疆石油地质, 2008(1): 88-90. |
[3] | 徐国伟, 朱婵. 水侵气藏产水量预测模型研究[J]. 内蒙古石油化工, 2011, 37(9): 172-173. |
[4] | 冯强汉, 陈玉林, 赵莉, 魏克颖, 白玉奇. 利用测井资料预测致密气井产水量新方法[J]. 测井技术, 2016, 40(3): 339-342. |
[5] | 林霞, 刘宗尚, 高宇, 武博宇. 基于机器学习的产油量主控因素分析[J]. 信息系统工程, 2019, 32(12): 94-97+99. |
[6] | 朱仲义, 刘洪, 岳圣杰, 等. 融合注意力机制的Bi-LSTM页岩气产能预测方法[J]. 重庆科技学院学报(自然科学版), 2023, 25(3): 52-57. |
[7] | 许敏, 赵粉霞. 神经网络法在气井产能预测中的应用[J]. 天然气工业, 2000(3): 73-75. |
[8] | 李成彬. 基于改进LSTM的复杂断块油藏油井产量预测方法[J]. 石化技术, 2024, 31(4): 258-260. |