|
数字经济对我国制造业绿色全要素生产率的影响
|
Abstract:
数字经济作为一种新型经济形态,正不断融入经济社会各领域的全过程,为传统产业高端化、智能化、绿色化转型升级提供了有效途径。为了探究数字经济与制造业高质量发展之间的关联性,本文基于2013~2021年中国30个省份的面板数据,分别利用熵值法和EBM-GML模型测算数字经济发展水平与制造业绿色全要素生产率,探究数字经济对制造业绿色全要素生产率的影响。研究结果表明:数字经济对制造业绿色全要素生产率有显著的促进作用,数字经济发展水平越高,其对绿色全要素生产率的促进作用越大,且这一结论具有稳健性;数字经济对制造业绿色全要素生产率的影响具有区域异质性,数字经济能够显著提升东部地区制造业绿色全要素生产率,对中、西部地区的影响不显著。建议从加快两化融合发展、实施区域差异化发展策略、培养数字化人才等方面推动制造业高质量发展。
As a new economic paradigm, the digital economy is continuously integrating into all areas of economic and social processes, providing effective pathways for the upgrade and transformation of traditional industries towards a more advanced, intelligent, and environmentally friendly model. In order to explore the correlation between the digital economy and the high-quality development of the manufacturing industry, based on the panel data of 30 provinces in China from 2013 to 2021, this paper uses the entropy method and EBM-GML model respectively to estimate the development level of the digital economy and green total factor productivity of manufacturing industry, and explores the impact of the digital economy on green total factor productivity of manufacturing industry. The results show that the digital economy has a significant promoting effect on the green total factor productivity of the manufacturing industry, and the higher the development level of the digital economy, the greater the promoting effect on green total factor productivity. This conclusion is robust; The influence of digital economy on the green TFP of the manufacturing industry has regional heterogeneity. The digital economy can significantly improve the green TFP of the manufacturing industry in the eastern region, but has no significant impact on the central and western regions. It is suggested to promote the high-quality development of the manufacturing industry from the aspects of accelerating the integrated development of the two, implementing regional differentiated development strategies, and training digital talents.
[1] | 贺铿. 关于信息产业和信息产业投入产出表的编制方法[J]. 数量经济技术经济研究, 1989(2): 34-40+33. |
[2] | 许宪春, 张美慧. 中国数字经济规模测算研究——基于国际比较的视角[J]. 中国工业经济, 2020(5): 23-41. |
[3] | 刘军, 杨渊鋆, 张三峰. 中国数字经济测度与驱动因素研究[J]. 上海经济研究, 2020(6): 81-96. |
[4] | 鲜祖德, 王天琪. 中国数字经济核心产业规模测算与预测[J]. 统计研究, 2022, 39(1): 4-14. |
[5] | Fukuyama, H. and Weber, W.L. (2009) A Directional Slacks-Based Measure of Technical Inefficiency. Socio-Economic Planning Sciences, 43, 274-287. https://doi.org/10.1016/j.seps.2008.12.001 |
[6] | 韦庄禹. 数字经济发展对制造业企业资源配置效率的影响研究[J]. 数量经济技术经济研究, 2022, 39(3): 66-85. |
[7] | 荆文君, 孙宝文. 数字经济促进经济高质量发展: 一个理论分析框架[J]. 经济学家, 2019(2): 66-73. |
[8] | 刘平峰, 张旺. 数字技术如何赋能制造业全要素生产率? [J]. 科学学研究, 2021, 39(8): 1396-1406. |
[9] | 陈楠, 蔡跃洲. 人工智能、承接能力与中国经济增长——新“索洛悖论”和基于AI专利的实证分析[J]. 经济学动态, 2022(11): 39-57. |
[10] | 陈超凡. 中国工业绿色全要素生产率及其影响因素——基于ML生产率指数及动态面板模型的实证研究[J]. 统计研究, 2016, 33(3): 53-62. |
[11] | 余东华, 燕玉婷. 环境规制、技术创新与制造业绿色全要素生产率[J]. 城市与环境研究, 2022(2): 58-79. |
[12] | 周晓辉, 刘莹莹, 彭留英. 数字经济发展与绿色全要素生产率提高[J]. 上海经济研究, 2021(12): 51-63. |
[13] | 芦婷婷, 祝志勇. 人工智能是否会降低劳动收入份额——基于固定效应模型和面板分位数模型的检验[J]. 山西财经大学学报, 2021, 43(11): 29-41. |