全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自监督网络学习与自适应中值滤波的地震数据去噪方法研究
Research on Seismic Data Denoising Method Based on Self Supervised Network Learning and Adaptive Median Filtering

DOI: 10.12677/aam.2024.1310428, PP. 4478-4485

Keywords: 去噪,地震资料,网络模型,自监督学习,自适应中值滤波
Denoising
, Seismic Data, Network Model, Self-Supervised Learning, Adaptive Median Filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

在地震图像采集过程中,由于存在各种影响因素,采集到的地震资料常常夹杂着各种噪声,严重影响了后续研究的准确性。因此,图像去噪成为至关重要的一步。自适应中值滤波作为一种经典的去噪方法,在去除椒盐噪声方面表现优异。近来,一种结合传统全变差与自监督学习网络模型的方法——S2S-WTV被提出,该方法不仅拥有神经网络的强大表示能力,还有传统模型的泛化能力,在针对高斯噪声去除方面展现出了出色的性能。基于此,本文提出了一种结合传统方法与神经网络的多种噪声去噪模型,显著提升了去噪后的视觉效果与图像结构相似性。
During seismic image acquisition, various factors often result in the data being noisy, severely impacting the accuracy of subsequent studies. Therefore, image denoising is critical. Adaptive median filtering, a classic denoising technique, excels at removing salt and pepper noise. Recently, S2S-WTV, a method that integrates traditional total variation with self-supervised learning network models, has been introduced. This approach combines the strong representational capabilities of neural networks with the generalization abilities of traditional models, showing outstanding performance in reducing Gaussian noise. Building on this, the paper introduces a multi-noise denoising model that combines traditional methods with neural networks, significantly enhancing visual quality and image structure similarity post-denoising.

References

[1]  Hwang, H. and Haddad, R.A. (1995) Adaptive Median Filters: New Algorithms and Results. IEEE Transactions on Image Processing, 4, 499-502.
https://doi.org/10.1109/83.370679
[2]  张永飞, 邓辉. 一种基于自适应中值滤波的各向异性扩散滤波的图像去噪算法[J]. 装备制造技术, 2023(11): 18-22.
[3]  文鸿雁, 郭锴, 陈伟清. 基于遥感图像频率域滤波的灰色线性中值去噪算法[J]. 桂林理工大学学报, 2014, 34(4): 697-703.
[4]  Liu, G. and Chen, X. (2013) Noncausal f-x-y Regularized Nonstationary Prediction Filtering for Random Noise Attenuation on 3D Seismic Data. Journal of Applied Geophysics, 93, 60-66.
https://doi.org/10.1016/j.jappgeo.2013.03.007
[5]  陈振娅, 刘增力. 基于小波变换的水下图像去噪方法[J]. 现代电子技术, 2023, 46(23): 43-47.
[6]  郑晓雯. 一种基于Curvelet变换的地震数据去噪方法和应用[J]. 城市道桥与防洪, 2024(3): 251-254.
[7]  崔永福, 吴国忱, 郭念民, 等. LIFT去噪方法在低信噪比资料处理中的应用[J]. 物探化探计算技术, 2014, 36(2): 215-221.
[8]  Feng, J., Liu, X., Li, X., Xu, W. and Liu, B. (2022) Low-Rank Tensor Minimization Method for Seismic Denoising Based on Variational Mode Decomposition. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
https://doi.org/10.1109/lgrs.2021.3100262
[9]  Dabov, K., Foi, A., Katkovnik, V. and Egiazarian, K. (2006) Image Denoising with Block-Matching and 3D Filtering. SPIE Proceedings, 6064, Article ID: 606414.
https://doi.org/10.1117/12.643267
[10]  Gu, S., Zhang, L., Zuo, W. and Feng, X. (2014) Weighted Nuclear Norm Minimization with Application to Image Denoising. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 2862-2869.
https://doi.org/10.1109/cvpr.2014.366
[11]  Wang, Y., Peng, J., Zhao, Q., Leung, Y., Zhao, X. and Meng, D. (2018) Hyperspectral Image Restoration via Total Variation Regularized Low-Rank Tensor Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1227-1243.
https://doi.org/10.1109/jstars.2017.2779539
[12]  刘迪, 贾金露, 赵玉卿, 钱育蓉. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13.
[13]  Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. (2017) Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26, 3142-3155.
https://doi.org/10.1109/tip.2017.2662206
[14]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/cvpr.2016.90
[15]  金焱, 杨敏. 去噪正则化与FFDNet结合的相位恢复算法[J]. 计算机技术与发展, 2022, 32(10): 137-142.
[16]  黄银, 陈波, 钱俊磊, 等. 基于改进ADNet网络模型的低剂量CT图像降噪方法[J]. 国外电子测量技术, 2023, 42(3): 175-181.
[17]  Krull, A., Vičar, T., Prakash, M., Lalit, M. and Jug, F. (2020) Probabilistic Noise2void: Unsupervised Content-Aware Denoising. Frontiers in Computer Science, 2, Article No. 5.
https://doi.org/10.3389/fcomp.2020.00005
[18]  Quan, Y., Chen, M., Pang, T. and Ji, H. (2020) Self2Self with Dropout: Learning Self-Supervised Denoising from Single Image. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 1887-1895.
https://doi.org/10.1109/cvpr42600.2020.00196
[19]  Xu, Z., Luo, Y., Wu, B. and Meng, D. (2023) S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation Regularized Self-Supervised Learning. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15.
https://doi.org/10.1109/tgrs.2023.3268554

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133