全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv8-VCRA的一种轻量级的带钢表面缺陷检测研究
Research on a Lightweight Strip Surface Defect Detection Based on YOLOv8-VCRA

DOI: 10.12677/hjdm.2024.144020, PP. 218-229

Keywords: 目标检测,YOLOv8,钢材缺陷,注意力机制,VanillaNet
Object Detection
, YOLOv8, Steel Defects, Attention Mechanism, VanillaNet

Full-Text   Cite this paper   Add to My Lib

Abstract:

钢表面缺陷检测的重点是快速识别和精确定位。目前在带钢表面缺陷检测领域,深度学习网络已经取得了显著的进步,但是通用算法复杂度高、计算量庞大,检测算法部署困难。本文基于YOLOv8提出一种轻量级的带钢表面缺陷检测模型YOLOv8-VCRA。该模型引入轻量级网络VanillaNet构建全新的骨干网络,通过减少不必要的分支结构降低模型的复杂度。此外,设计一个新模块CBAM-RFB,增强特征提取网络的感知场,有效改善目标易漏检的问题。最后将AFPN融入Neck结构,在融合过程中提取更多有用的信息。实验结果表明,改进后的YOLOv8-VCRA网络模型有着良好的检测性能,检测精度相比原始YOLOv8网络提升了1.2%,模型参数量降低了0.95 M,模型计算量降低了3.1 G,在保持原高精度少量提升的情况下,能够快速且实时地对钢材表面缺陷进行检测。
The emphasis of steel surface defect detection is rapid identification and accurate location. At present, in the field of strip surface defect detection, deep learning networks have made remarkable progress, but the general algorithm is of high complexity and huge computation, and the detection algorithm deployment is difficult. In this paper, a lightweight strip surface defect detection model, YOLOV8-VCRA, is proposed based on YOLOv8. This model introduces lightweight network VanillaNet to build a new backbone network, and reduces the complexity of the model by reducing unnecessary branch structure. In addition, a new module CBAM-RFB is designed to enhance the perception field of the feature extraction network and effectively improve the problem that the target is easy to miss. Finally, AFPN is integrated into Neck structure to extract more useful information in the fusion process. The experimental results show that the improved YOLOV8-VCRA network model has good detection performance, the detection accuracy is increased by 1.2% compared with the original YOLOv8 network, the number of model parameters is reduced by 0.95 M, and the calculation amount of the model is reduced by 3.1 G. It can detect steel surface defects quickly and in real time.

References

[1]  Luo, Q., Sun, Y., Li, P., Simpson, O., Tian, L. and He, Y. (2019) Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification. IEEE Transactions on Instrumentation and Measurement, 68, 667-679.
https://doi.org/10.1109/tim.2018.2852918
[2]  Amit, Y., Felzenszwalb, P. and Girshick, R. (2021) Object Detection. In: Ikeuchi, K., Ed., Computer Vision: A Reference Guide, Springer International Publishing, Berlin, 875-883.
https://doi.org/10.1007/978-3-030-63416-2_660
[3]  Li, Z., Peng, C., Yu, G., et al. (2017) Light-Head R-CNN: In Defense of Two-Stage Object Detector.
[4]  Girshick, R. (2015) Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448.
https://doi.org/10.1109/iccv.2015.169
[5]  He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017) Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 2961-2969.
https://doi.org/10.1109/iccv.2017.322
[6]  Razavian, A.S., Azizpour, H., Sullivan, J. and Carlsson, S. (2014) CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, 23-28 June 2014, 806-813.
https://doi.org/10.1109/cvprw.2014.131
[7]  Ren, S., He, K., Girshick, R., et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Proceedings of the 28th International Conference on Neural Information Processing Systems, Volume 1, 91-99.
[8]  Ni, J., Shen, K., Chen, Y. and Yang, S.X. (2023) An Improved SSD-Like Deep Network-Based Object Detection Method for Indoor Scenes. IEEE Transactions on Instrumentation and Measurement, 72, 1-15.
https://doi.org/10.1109/tim.2023.3244819
[9]  Wang, Y., Wang, C., Zhang, H., Dong, Y. and Wei, S. (2019) Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery. Remote Sensing, 11, Article No. 531.
https://doi.org/10.3390/rs11050531
[10]  Jiang, P., Ergu, D., Liu, F., Cai, Y. and Ma, B. (2022) A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066-1073.
https://doi.org/10.1016/j.procs.2022.01.135
[11]  Shaifee, M.J., Chywl, B., Li, F. and Wong, A. (2017) Fast YOLO: A Fast You Only Look Once System for Real-Time Embedded Object Detection in Video. Journal of Computational Vision and Imaging Systems, 3.
https://doi.org/10.15353/vsnl.v3i1.171
[12]  Liu, C., Tao, Y., Liang, J., Li, K. and Chen, Y. (2018) Object Detection Based on YOLO Network. 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, 14-16 December 2018, 799-803.
https://doi.org/10.1109/itoec.2018.8740604
[13]  Mi, Z., Chen, R. and Zhao, S. (2023) Research on Steel Rail Surface Defects Detection Based on Improved Yolov4 Network. Frontiers in Neurorobotics, 17, Article ID: 1119896.
https://doi.org/10.3389/fnbot.2023.1119896
[14]  Li, M., Wang, H. and Wan, Z. (2022) Surface Defect Detection of Steel Strips Based on Improved Yolov4. Computers and Electrical Engineering, 102, Article ID: 108208.
https://doi.org/10.1016/j.compeleceng.2022.108208
[15]  Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H. and Guo, X. (2022) Real-Time Vehicle Detection Based on Improved YOLO V5. Sustainability, 14, Article No. 12274.
https://doi.org/10.3390/su141912274
[16]  Wu, W., Liu, H., Li, L., Long, Y., Wang, X., Wang, Z., et al. (2021) Application of Local Fully Convolutional Neural Network Combined with YOLO V5 Algorithm in Small Target Detection of Remote Sensing Image. PLOS ONE, 16, e0259283.
https://doi.org/10.1371/journal.pone.0259283
[17]  Shen, L.J., Cui, W.H., Tao, Y., et al. (2024) Surface Defect Detection Algorithm of Hot-Rolled Strip Based on Improved YOLOv7. IAENG International Journal of Computer Science, 51, 345-354.
[18]  Jiang, K., Xie, T., Yan, R., Wen, X., Li, D., Jiang, H., et al. (2022) An Attention Mechanism-Improved Yolov7 Object Detection Algorithm for Hemp Duck Count Estimation. Agriculture, 12, Article No. 1659.
https://doi.org/10.3390/agriculture12101659
[19]  Chen, H., Wang, Y., Guo, J., et al. (2024) VanillaNet: The Power of Minimalism in Deep Learning. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, 10-16 December 2023, 7050-7070.
[20]  Wang, Z., Cheng, Z., Huang, H. and Zhao, J. (2019) ShuDA-RFBNet for Real-Time Multi-Task Traffic Scene Perception. 2019 Chinese Automation Congress (CAC), Hangzhou, 22-24 November 2019, 305-310.
https://doi.org/10.1109/cac48633.2019.8997236
[21]  Woo, S., Park, J., Lee, J. and Kweon, I.S. (2018) CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer VisionECCV 2018, Springer International Publishing, Berlin, 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1
[22]  Yang, G., Lei, J., Zhu, Z., Cheng, S., Feng, Z. and Liang, R. (2023). AFPN: Asymptotic Feature Pyramid Network for Object Detection. 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, 1-4 October 2023, 2184-2189.
https://doi.org/10.1109/smc53992.2023.10394415
[23]  Pang, Y., Sun, M., Jiang, X. and Li, X. (2018) Convolution in Convolution for Network in Network. IEEE Transactions on Neural Networks and Learning Systems, 29, 1587-1597.
https://doi.org/10.1109/tnnls.2017.2676130

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133