|
随机森林模型在预测大一新生智能手机成瘾中的应用
|
Abstract:
目的:应用随机森林算法预测大一新生智能手机成瘾类别的效果,并分析影响大一新生智能手机成瘾的重要因素。方法:收集某高校2530名大一新生的心理学和人口学信息,采用随机森林构建判断大一新生智能手机成瘾程度的三分类模型,选择AUC值、F1值、召回率和精准率作为模型评价指标。结果:随机森林的分类效果良好,同时通过影响因素的重要性分析发现,预测智能手机成瘾的最重要的五个因素分别是学业倦怠、错失焦虑、自我控制、拖延行为和社交焦虑。结论:随机森林模型能够有效预测大一新生的智能手机成瘾。
Objective: This paper aims to evaluate the effectiveness of applying the Random Forest algorithm in predicting the categories of smartphone addiction among first-year college students, and to analyze the key factors influencing smartphone addiction in this population. Methods: Psychological and demographic data were collected from 2,530 first-year students at a university. A three-class classification model was constructed using the Random Forest algorithm to determine the level of smartphone addiction among these students. The model’s performance was evaluated using AUC, F1-score, recall, and precision as metrics. Results: The Random Forest model demonstrated good classification performance. Furthermore, an analysis of the importance of influencing factors revealed that the five most significant predictors of smartphone addiction were academic burnout, fear of missing out, self-control, procrastination behavior, and social anxiety. Conclusion: The Random Forest model is effective in predicting smartphone addiction among first-year college students.
[1] | 陈小莉, 戴晓阳, 董琴(2008). Aitken拖延问卷在大学生中的应用研究. 中国临床心理学杂志, (1), 22-23+76. |
[2] | 董健宇, 韦文棋(2020). 机器学习在抑郁症领域的应用. 心理科学进展, 28(2), 266. |
[3] | 高文斌, 陈祉妍(2006). 网络成瘾病理心理机制及综合心理干预研究. 心理科学进展, (4), 596-603. |
[4] | 居豪, 吕军城(2022). 大学生焦虑与手机成瘾现状及影响因素研究. 中国卫生统计, 39(4), 550-552+557. |
[5] | 李琦, 王佳宁, 赵思琦, 贾彦茹(2019). 错失焦虑量表测评大学生的效度和信度. 中国心理卫生杂志, 33(4), 312-317. |
[6] | 连榕, 杨丽娴, 吴兰花(2005). 大学生的专业承诺、学习倦怠的关系与量表编制. 心理学报, 37(5), 632-636. |
[7] | 连帅磊, 刘庆奇, 孙晓军, 周宗奎(2018). 手机成瘾与大学生拖延行为的关系: 有调节的中介效应分析. 心理发展与教育, 34(5), 595-604. |
[8] | 彭纯子, 范晓玲, 李罗初(2003). 社交回避与苦恼量表在学生群体中的信效度研究. 中国临床心理学杂志, 11(4), 279-281. |
[9] | 盛丹怡, 卢奇, 程时伟(2022). 基于眼动跟踪的情绪识别方法研究. 人类工效学, 28(6), 57-62. |
[10] | 苏双, 潘婷婷, 刘勤学, 陈潇雯, 王宇静, 李明月(2014). 大学生智能手机成瘾量表的初步编制. 中国心理卫生杂志, 28(5), 392-397. |
[11] | 谭树华, 郭永玉(2008). 大学生自我控制量表的修订. 中国临床心理学杂志, 16(5), 468-470. |
[12] | 吴洁(2020). 大学生学业拖延与网络依赖关系的调查分析. 国际公关, (7), 20-21. |
[13] | 张磊, 陈贞翔, 杨波(2014). 社交网络用户的人格分析与预测. 计算机学报, 37(8), 1877-1894. |
[14] | 赵宏, 刘颖, 李爽, 徐鹏飞, 郑勤华(2019). 基于在线学习行为数据的人格特质识别研究. 开放教育研究, 25(5), 110-120. |
[15] | Aboujaoude, E., Vera Cruz, G., Rochat, L., Courtois, R., Ben Brahim, F., Khan, R. et al. (2022). Assessment of the Popularity and Perceived Effectiveness of Smartphone Tools That Track and Limit Smartphone Use: Survey Study and Machine Learning Analysis. Journal of Medical Internet Research, 24, e38963. https://doi.org/10.2196/38963 |
[16] | Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W. et al. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) Model for Addictive Behaviors: Update, Generalization to Addictive Behaviors beyond Internet-Use Disorders, and Specification of the Process Character of Addictive Behaviors. Neuroscience & Biobehavioral Reviews, 104, 1-10. https://doi.org/10.1016/j.neubiorev.2019.06.032 |
[17] | Dempsey, A. E., O’Brien, K. D., Tiamiyu, M. F., & Elhai, J. D. (2019). Fear of Missing out (FoMO) and Rumination Mediate Relations between Social Anxiety and Problematic Facebook Use. Addictive Behaviors Reports, 9, Article ID: 100150. https://doi.org/10.1016/j.abrep.2018.100150 |
[18] | Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction with Life Scale. Journal of Personality Assessment, 49, 71-75. https://doi.org/10.1207/s15327752jpa4901_13 |
[19] | Elhai, J. D., Yang, H., Rozgonjuk, D., & Montag, C. (2020). Using Machine Learning to Model Problematic Smartphone Use Severity: The Significant Role of Fear of Missing Out. Addictive Behaviors, 103, Article ID: 106261. https://doi.org/10.1016/j.addbeh.2019.106261 |
[20] | Enez Darcin, A., Kose, S., Noyan, C. O., Nurmedov, S., Yılmaz, O., & Dilbaz, N. (2016). Smartphone Addiction and Its Relationship with Social Anxiety and Loneliness. Behaviour & Information Technology, 35, 520-525. https://doi.org/10.1080/0144929x.2016.1158319 |
[21] | Giraldo-Jiménez, C. F., Gaviria-Chavarro, J., Sarria-Paja, M., Bermeo Varón, L. A., Villarejo-Mayor, J. J., & Rodacki, A. L. F. (2022). Smartphones Dependency Risk Analysis Using Machine-Learning Predictive Models. Scientific Reports, 12, Article No. 22649. https://doi.org/10.1038/s41598-022-26336-2 |
[22] | Gross, J., Baumgartl, H., & Buettner, R. (2020). A Novel Machine Learning Approach for High-Performance Diagnosis of Premature Internet Addiction Using the Unfolded EEG Spectra. In AMCIS 2020 Proceedings (p. 26). Association for Information Systems. |
[23] | Hsieh, W., Shih, D., Shih, P., & Lin, S. (2019). An Ensemble Classifier with Case-Based Reasoning System for Identifying Internet Addiction. International Journal of Environmental Research and Public Health, 16, Article No. 1233. https://doi.org/10.3390/ijerph16071233 |
[24] | Kamaruddin, N., Wahab, A., & Rozaidi, Y. (2019). Neuro-Physiological Porn Addiction Detection Using Machine Learning Approach. Indonesian Journal of Electrical Engineering and Computer Science, 16, 964-971. https://doi.org/10.11591/ijeecs.v16.i2.pp964-971 |
[25] | Khang, H., Kim, J. K., & Kim, Y. (2013). Self-Traits and Motivations as Antecedents of Digital Media Flow and Addiction: The Internet, Mobile Phones, and Video Games. Computers in Human Behavior, 29, 2416-2424. https://doi.org/10.1016/j.chb.2013.05.027 |
[26] | Lee, J., & Kim, W. (2021). Prediction of Problematic Smartphone Use: A Machine Learning Approach. International Journal of Environmental Research and Public Health, 18, Article No. 6458. https://doi.org/10.3390/ijerph18126458 |
[27] | Low, D. M., Rumker, L., Talkar, T., Torous, J., Cecchi, G., & Ghosh, S. S. (2020). Natural Language Processing Reveals Vulnerable Mental Health Support Groups and Heightened Health Anxiety on Reddit During COVID-19: Observational Study. Journal of Medical Internet Research, 22, e22635. https://doi.org/10.2196/22635 |
[28] | Narkbunnum, W., & Wisaeng, K. (2022). Prediction of Depression for Undergraduate Students Based on Imbalanced Data by Using Data Mining Techniques. Applied System Innovation, 5, Article No. 120. https://doi.org/10.3390/asi5060120 |
[29] | Neverkovich, S. D., Bubnova, I. S., Kosarenko, N. N., Sakhieva, R. G., Sizova, Z. M., Zakharova, V. L. et al. (2018). Students’ Internet Addiction: Study and Prevention. EURASIA Journal of Mathematics, Science and Technology Education, 14, 1483-1495. https://doi.org/10.29333/ejmste/83723 |
[30] | Przepiorka, A., Blachnio, A., & Cudo, A. (2021). Procrastination and Problematic New Media Use: The Mediating Role of Future Anxiety. Current Psychology, 42, 5169-5177. https://doi.org/10.1007/s12144-021-01773-w |
[31] | Rosenberg, M. (2015). The Measurement of Self-Esteem, Society, and the Adolescent Self-Image. In Society and the Adolescent Self-Image Princeton (pp. 16-36). Princeton University Press. |
[32] | Salehan, M., & Negahban, A. (2013). Social Networking on Smartphones: When Mobile Phones Become Addictive. Computers in Human Behavior, 29, 2632-2639. https://doi.org/10.1016/j.chb.2013.07.003 |
[33] | Smetaniuk, P. (2014). A Preliminary Investigation into the Prevalence and Prediction of Problematic Cell Phone Use. Journal of Behavioral Addictions, 3, 41-53. https://doi.org/10.1556/jba.3.2014.004 |
[34] | Watson, D., & Friend, R. (1969). Measurement of Social-Evaluative Anxiety. Journal of Consulting and Clinical Psychology, 33, 448-457. https://doi.org/10.1037/h0027806 |
[35] | You, Z., Zhang, Y., Zhang, L., Xu, Y., & Chen, X. (2019). How Does Self-Esteem Affect Mobile Phone Addiction? The Mediating Role of Social Anxiety and Interpersonal Sensitivity. Psychiatry Research, 271, 526-531. https://doi.org/10.1016/j.psychres.2018.12.040 |
[36] | Zimet, G., Powell, S., Farley, G., Werkman, S., & Berkoff, K. (1990). Psychometric Characteristics of the Multidimensional Scale of Perceived Social Support. Journal of Personality Assessment, 55, 610-617. https://doi.org/10.1207/s15327752jpa5503&4_17 |