全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Change in the Number of Tropical Cyclone Landfall and Approach over Mozambique from 1980 to 2020

DOI: 10.4236/gep.2024.1210001, PP. 1-20

Keywords: Mozambique, Tropical Cyclone Landfall, Tropical Cyclone Approach, Environmental Conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the variability of tropical cyclone (TC) landfall and approach over Mozambique as well as the environmental factors influencing were investigated. The frequencies of tropical cyclone landfall and approach as well as environmental factors were compared between the two periods (1980 to 1999 and 2000 to 2020). This study found that, according to International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone data, the number of tropical cyclones making landfall over Mozambique increased by about 66% in the second period (2000-2020), compared to 34% in the first period (1980-1999). While the number of tropical cyclone approaches reduced from 59% in the first period to 41% in the second period. An assessment of the environmental conditions showed that warmer sea surface temperature (SST) and low vertical wind shear (VWS) were favorable to more TC genesis and, consequently, an increase in landfalls and a reduction in TC confined to the approach.

References

[1]  Bracken, W. E., & Bosart, L. F. (2000). The Role of Synoptic-Scale Flow during Tropical Cyclogenesis over the North Atlantic Ocean. Monthly Weather Review, 128, 353-376.
https://doi.org/10.1175/1520-0493(2000)128<0353:trossf>2.0.co;2
[2]  Charrua, A. B., Padmanaban, R., Cabral, P., Bandeira, S., & Romeiras, M. M. (2021). Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sensing, 13, Article No. 201.
https://doi.org/10.3390/rs13020201
[3]  Choi, J.-W., Cha, Y., & Kim, H.-D. (2016). Interdecadal Change of Korea Landfalling Tropical Cyclone Frequency and Its Possible Association with PDO. Tropical Cyclone Research and Review, 5, 58-71.
[4]  Das, N. R. (2009). Human Development Report 2007/2008 Fighting Climate Change: Human Solidarity in a Divided World, UNDP, New York. Social Change, 39, 154-159.
https://doi.org/10.1177/004908570903900112
[5]  Deo, A. A., Ganer, D. W., & Nair, G. (2011). Tropical Cyclone Activity in Global Warming Scenario. Natural Hazards, 59, 771-786.
https://doi.org/10.1007/s11069-011-9794-8
[6]  Elms, J. D., & Neumann, C. J. (1993). Tropical Cyclones of the North Atlantic Ocean, 1871-1992. Volume 6, Issue 2 of Historical Climatology Series, National Climatic Data Center.
[7]  Emerton, R., Cloke, H., Ficchi, A., Hawker, L., de Wit, S., Speight, L. et al. (2020). Emergency Flood Bulletins for Cyclones Idai and Kenneth: A Critical Evaluation of the Use of Global Flood Forecasts for International Humanitarian Preparedness and Response. International Journal of Disaster Risk Reduction, 50, Article ID: 101811.
https://doi.org/10.1016/j.ijdrr.2020.101811
[8]  Finney, D. L., Marsham, J. H., Walker, D. P., Birch, C. E., Woodhams, B. J., Jackson, L. S. et al. (2020). The Effect of Westerlies on East African Rainfall and the Associated Role of Tropical Cyclones and the Madden-Julian Oscillation. Quarterly Journal of the Royal Meteorological Society, 146, 647-664.
https://doi.org/10.1002/qj.3698
[9]  Fitchett, J. M., & Grab, S. W. (2014). A 66-Year Tropical Cyclone Record for Southeast Africa: Temporal Trends in a Global Context. International Journal of Climatology, 34, 3604-3615.
https://doi.org/10.1002/joc.3932
[10]  Hoguane, A. M. (2007). Perfil Diagnóstico da Zona Costeira de Moçambique. Revista de Gestão Costeira Integrada, 7, 69-82.
https://doi.org/10.5894/rgci11
[11]  Hsiang, S. M., & Narita, D. (2012). Adaptation to Cyclone Risk: Evidence from the Global Cross-Section. Climate Change Economics, 3, Article ID: 1250011.
https://doi.org/10.1142/s201000781250011x
[12]  Ibanez, T., Keppel, G., Menkes, C., Gillespie, T. W., Lengaigne, M., Mangeas, M. et al. (2019). Globally Consistent Impact of Tropical Cyclones on the Structure of Tropical and Subtropical Forests. Journal of Ecology, 107, 279-292.
https://doi.org/10.1111/1365-2745.13039
[13]  Jury, M. R., & Matyas, C. J. (2022). Tropical Cyclones in the Northern Mozambique Channel: Composite Intra-Seasonal Forcing and 2019 Event. Meteorology and Atmospheric Physics, 134, Article No. 70.
https://doi.org/10.1007/s00703-022-00911-8
[14]  Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L. et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-471.
https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
[15]  Kaplan, J., & DeMaria, M. (2003). Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather and Forecasting, 18, 1093-1108.
https://doi.org/10.1175/1520-0434(2003)018<1093:lcorit>2.0.co;2
[16]  Klotzbach, P. J., Bell, M. M., Bowen, S. G., Gibney, E. J., Knapp, K. R., & Schreck, C. J. (2020). Surface Pressure a More Skillful Predictor of Normalized Hurricane Damage than Maximum Sustained Wind. Bulletin of the American Meteorological Society, 101, E830-E846.
https://doi.org/10.1175/bams-d-19-0062.1
[17]  Kruger, L. (2016). The Timing of Agricultural Production in Hazard-Prone Areas to Prevent Losses at Peak-Risk Periods: A Case of Malawi, Madagascar and Mozambique. Jàmbá: Journal of Disaster Risk Studies, 8, a179.
https://doi.org/10.4102/jamba.v8i2.179
[18]  Landman, W. A., Seth, A., & Camargo, S. J. (2005). The Effect of Regional Climate Model Domain Choice on the Simulation of Tropical Cyclone-Like Vortices in the Southwestern Indian Ocean. Journal of Climate, 18, 1263-1274.
https://doi.org/10.1175/jcli3324.1
[19]  Lee, J., Im, J., Cha, D., Park, H., & Sim, S. (2020). Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data. Remote Sensing, 12, Article No. 108.
https://doi.org/10.3390/rs12010108
[20]  Leroux, M., Meister, J., Mekies, D., Dorla, A., & Caroff, P. (2018). A Climatology of Southwest Indian Ocean Tropical Systems: Their Number, Tracks, Impacts, Sizes, Empirical Maximum Potential Intensity, and Intensity Changes. Journal of Applied Meteorology and Climatology, 57, 1021-1041.
https://doi.org/10.1175/jamc-d-17-0094.1
[21]  Lundgren, M., & Strandh, V. (2022). Navigating a Double Burden—Floods and Social Vulnerability in Local Communities in Rural Mozambique. International Journal of Disaster Risk Reduction, 77, Article ID: 103023.
https://doi.org/10.1016/j.ijdrr.2022.103023
[22]  Manhique, A. J., Guirrugo, I. A., Nhantumbo, B. J., & Mavume, A. F. (2021). Seasonal to Interannual Variability of Vertical Wind Shear and Its Relationship with Tropical Cyclogenesis in the Mozambique Channel. Atmosphere, 12, Article No. 739.
https://doi.org/10.3390/atmos12060739
[23]  Matyas, C. J., & VanSchoick, S. (2021). Geospatial Analysis of Rain Fields and Associated Environmental Conditions for Cyclones Eline and Hudah. Geomatics, 1, 92-113.
https://doi.org/10.3390/geomatics1010008
[24]  Mavume, A., Rydberg, L., Rouault, M., & Lutjeharms, J. (2010). Climatology and Landfall of Tropical Cyclones in the South-West Indian Ocean. Western Indian Ocean Journal of Marine Science, 8, 15-36.
https://doi.org/10.4314/wiojms.v8i1.56672
[25]  McBride, J. L., & Zehr, R. (1981). Observational Analysis of Tropical Cyclone Formation. Part II: Comparison of Non-Developing versus Developing Systems. Journal of the Atmospheric Sciences, 38, 1132-1151.
https://doi.org/10.1175/1520-0469(1981)038<1132:oaotcf>2.0.co;2
[26]  Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The Impact of Climate Change on Global Tropical Cyclone Damage. Nature Climate Change, 2, 205-209.
https://doi.org/10.1038/nclimate1357
[27]  MICOA (2021). First Nationally Determined Contribution to the United Nations Framework Convention on Climate Change.
https://www.mendeley.com/catalogue/7ef66a80-7441-3d3e-9979-2bd56ea58e74/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7B13539c3e-dcf7-3a9b-ba7d-6ff073f34657%7D
[28]  Nam, C. C., Park, D. R., Ho, C., & Chen, D. (2018). Dependency of Tropical Cyclone Risk on Track in South Korea. Natural Hazards and Earth System Sciences, 18, 3225-3234.
https://doi.org/10.5194/nhess-18-3225-2018
[29]  Nolan, D. S., & McGauley, M. G. (2014). Tropical Cyclogenesis in Wind Shear: Climatological Relationships and Physical Processes. In K. Oouchi, & H. Fudeyasu (Eds.), Cyclones: Formation, Triggers, and Control (pp. 1-36). Nova Science Publishers.
[30]  Nordhaus, W. D. (2010). The Economics of Hurricanes and Implications of Global Warming. Climate Change Economics, 1, 1-20.
https://doi.org/10.1142/s2010007810000054
[31]  Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J. et al. (2012). Global Trends in Tropical Cyclone Risk. Nature Climate Change, 2, 289-294.
https://doi.org/10.1038/nclimate1410
[32]  Shan, K., & Yu, X. (2021). Variability of Tropical Cyclone Landfalls in China. Journal of Climate, 34, 9235-9247.
https://doi.org/10.1175/jcli-d-21-0031.1
[33]  Vitart, F., Anderson, D., & Stockdale, T. (2003). Seasonal Forecasting of Tropical Cyclone Landfall over Mozambique. Journal of Climate, 16, 3932-3945.
https://doi.org/10.1175/1520-0442(2003)016<3932:sfotcl>2.0.co;2
[34]  Wang, H., & Wang, C. (2023). What Caused the Increase of Tropical Cyclones in the Western North Pacific during the Period of 2011-2020? Climate Dynamics, 60, 165-177.
https://doi.org/10.1007/s00382-022-06299-w
[35]  Yamaguchi, M., & Maeda, S. (2020). Increase in the Number of Tropical Cyclones Approaching Tokyo since 1980. Journal of the Meteorological Society of Japan. Ser. II, 98, 775-786.
https://doi.org/10.2151/jmsj.2020-039
[36]  Zehr, R. M. (1992). Tropical Cyclogenesis in the Western North Pacific.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133