全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

II型插值条件下三次样条函数误差分析
Error Analysis of Cubic Spline Function Under Type II Interpolation

DOI: 10.12677/pm.2024.1410340, PP. 19-29

Keywords: 三次样条,三转角,Doolittle分解,Crout分解
Cubic Spline
, Three Corners, Doolittle Decomposition, Crout Decomposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

样条函数是函数逼近理论一个非常活跃的分支,促使了研究人员需要深刻认识样条函数的本质及性质。本文介绍了基于Hermite两点三次公式的三转角插值算法。三转角以插值节点的一阶导数为未知量构建样条函数,在此基础上,研究插值节点均匀分布时,在第二类边界条件下,即II型插值条件下,当边界初值发生扰动时,对应的三次样条函数在插值节点的一阶导数值如何随第二边界初值的扰动而变化,基于Doolittle分解和Crout分解性质,推导出2个定理,即误差估计的表达式,这些定理为三次样条函数在二阶导数边界初值变化时的误差分析提供了可行的方法。
Spline function is a very active branch of function approximation theory, which makes researchers need to deeply understand the essence and properties of spline function. This paper introduces the three-angle interpolation algorithm based on Hermite two-point cubic formula. The three-angle spline function is constructed with the first derivative of the interpolating node as an unknown quantity. On this basis, when interpolating nodes are evenly distributed, under the second type of boundary condition, that is, under the type II interpolation condition, when the initial value of the boundary is disturbed, the corresponding cubic spline function in the interpolating node’s first derivative value changes with the disturbance of the initial value of the second boundary. Based on the properties of Doolittle decomposition and Crout decomposition, two theorems, namely the expression of error estimation, are derived. These theorems provide a feasible method for error analysis of cubic spline function when the initial value of the second derivative boundary changes.

References

[1]  Han, J., Zheng, P. and Wang, H. (2014) Structural Modal Parameter Identification and Damage Diagnosis Based on Hilbert-Huang Transform. Earthquake Engineering and Engineering Vibration, 13, 101-111.
https://doi.org/10.1007/s11803-014-0215-3
[2]  保明堂. 自然三次样条在增压器叶轮二元流设计计算中的误差估计[J]. 数学的实与认识, 1978(1): 41-50.
[3]  常庚哲. 关于三次样条函数的两点注记[J]. 数学的实践与认识, 1979(2): 55-64.
[4]  金坚明. 三次样条函数的又两点注记[J]. 西北师范大学学报(自然科学版), 1986(2): 14-23.
[5]  曹璎珞, 曹德欣. 计算方法[M]. 徐州: 中国矿业大学出版社, 1998: 84-90.
[6]  韩旭里, 万中. 数值分析与试验[M]. 北京: 科学出版社, 2006.
[7]  曹德欣, 王海军. 三次样条插值函数的数值稳定性[J]. 中国矿业大学学报, 2001, 30(2): 213-216.
[8]  朱建新, 李有法. 数值计算方法[M]. 北京: 高等教育出版社, 2012: 97-99.
[9]  薛毅. 数值分析与科学计算[M]. 北京: 科学出版社, 2011: 83-90.
[10]  冉瑞生, 黄廷祝, 刘兴平, 等. 三对角矩阵求逆的算法[J]. 应用数学和力学, 2009, 30(2): 238-244.
[11]  陶婷. 三次样条插值函数稳定性分析及其应用[D]: [硕士学位论文]. 成都: 成都理工大学, 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133