全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

煤层底板突水与危险性评价研究现状及展望
Research Status and Prospect of Coal Seam Floor Water Inrush and Risk Assessment

DOI: 10.12677/me.2024.124084, PP. 717-724

Keywords: 煤层底板突水,突水机理,危险性评价
Water Inrush from Coal Seam Floor
, Water Inrush Mechanism, Risk Assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤层底板突水作为一种严重的煤矿灾害,其隐蔽性强、破坏性大,对煤矿安全生产构成重大威胁。文章首先回顾了煤层底板突水机理的研究历程,包括国内外学者对突水系数、“下三带”理论、“四带”理论、岩体结构控制论等的提出和发展,这些理论为理解突水机理提供了重要基础。煤层开挖扰动这一动态变化过程,可反映在多个方面,因此,可以借助各种监测设备实现“参量”的动态演化来反应采动效应,在底板突水事故研究中,通过底板突水机理明确危险源及触发条件,对危险源进行分析并对底板突水危险性进行静态及动态评价,在底板水害防治工作中有重要的研究意义。在上述基础上,总体阐明了煤层底板突水危险性评价体系各环节的研究展望。
As a serious coal mine disaster, water inrush from coal seam floor has strong concealment and great destructiveness, which poses a major threat to coal mine safety production. Firstly, this paper reviews the research process of water inrush mechanism of coal seam floor, including the proposal and development of water inrush coefficient, “lower three zones” theory, “four zones” theory and rock mass structure control theory by domestic and foreign scholars. These theories provide an important basis for understanding the mechanism of water inrush. The dynamic change process of coal seam excavation disturbance can be reflected in many aspects. Therefore, the dynamic evolution of “parameters” can be realized by means of various monitoring equipment to reflect the mining effect. In the study of floor water inrush accident, the hazard source and trigger conditions are defined through the mechanism of floor water inrush, the hazard source is analyzed, and the static and dynamic evaluation of floor water inrush risk is carried out. It has important research significance in the prevention and control of floor water disaster. On the basis of the above, the research prospect of each link of the risk evaluation system of water inrush from coal seam floor is expounded.

References

[1]  何则, 周彦楠, 刘毅. 2050年中国能源消费结构的系统动力学模拟——基于重点行业的转型情景[J]. 自然资源学报, 2020, 35(11): 2696-2707.
[2]  王丹丹. 煤层底板突水危险源动态辨识及危险性动态评价[D]: [博士学位论文]. 徐州: 中国矿业大学, 2021.
[3]  孙斌杨, 张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报, 2021, 29(4): 985-1001.
[4]  董大旻. 建设施工安全生产中的危险源管理研究[D]: [博士学位论文]. 上海: 同济大学, 2007.
[5]  Badri, A., Nadeau, S. and Gbodossou, A. (2013) A New Practical Approach to Risk Management for Underground Mining Project in Quebec. Journal of Loss Prevention in the Process Industries, 26, 1145-1158.
https://doi.org/10.1016/j.jlp.2013.04.014
[6]  Domingues, M.S.Q., Baptista, A.L.F. and Diogo, M.T. (2017) Engineering Complex Systems Applied to Risk Management in the Mining Industry. International Journal of Mining Science and Technology, 27, 611-616.
https://doi.org/10.1016/j.ijmst.2017.05.007
[7]  Mahdevari, S., Shahriar, K. and Esfahanipour, A. (2014) Human Health and Safety Risks Management in Underground Coal Mines Using Fuzzy Topsis. Science of The Total Environment, 488, 85-99.
https://doi.org/10.1016/j.scitotenv.2014.04.076
[8]  Ozdemir, A. (2011) GIS-based Groundwater Spring Potential Mapping in the Sultan Mountains (Konya, Türkiye) Using Frequency Ratio, Weights of Evidence and Logistic Regression Methods and Their Comparison. Journal of Hydrology, 411, 290-308.
https://doi.org/10.1016/j.jhydrol.2011.10.010
[9]  Yin, H., Shi, Y., Niu, H., Xie, D., Wei, J., Lefticariu, L., et al. (2018) A GIS-Based Model of Potential Groundwater Yield Zonation for a Sandstone Aquifer in the Juye Coalfield, Shangdong, China. Journal of Hydrology, 557, 434-447.
https://doi.org/10.1016/j.jhydrol.2017.12.043
[10]  Lee, S., Kim, Y. and Oh, H. (2012) Application of a Weights-of-Evidence Method and GIS to Regional Groundwater Productivity Potential Mapping. Journal of Environmental Management, 96, 91-105.
https://doi.org/10.1016/j.jenvman.2011.09.016
[11]  Wu, Q., Liu, Y., Luo, L., Liu, S., Sun, W. and Zeng, Y. (2015) Quantitative Evaluation and Prediction of Water Inrush Vulnerability from Aquifers Overlying Coal Seams in Donghuantuo Coal Mine, China. Environmental Earth Sciences, 74, 1429-1437.
https://doi.org/10.1007/s12665-015-4132-1
[12]  Wu, Q., Liu, Y., Wu, X., Liu, S., Sun, W. and Zeng, Y. (2016) Assessment of Groundwater Inrush from Underlying Aquifers in Tunbai Coal Mine, Shanxi Province, China. Environmental Earth Sciences, 75, Article No. 737.
https://doi.org/10.1007/s12665-016-5542-4
[13]  Wu, Q., Xu, H. and Pang, W. (2007) GIS and ANN Coupling Model: An Innovative Approach to Evaluate Vulnerability of Karst Water Inrush in Coalmines of North China. Environmental Geology, 54, 937-943.
https://doi.org/10.1007/s00254-007-0887-3
[14]  Wu, Q., Zhou, W., Wang, J. and Xie, S. (2008) Prediction of Groundwater Inrush into Coal Mines from Aquifers Underlying the Coal Seams in China: Application of Vulnerability Index Method to Zhangcun Coal Mine, China. Environmental Geology, 57, 1187-1195.
https://doi.org/10.1007/s00254-008-1415-9
[15]  靳德武, 陈健鹏, 王延福, 等. 煤层底板突水预报人工神经网络系统的研究[J]. 西安科技学院学报, 2000, 20(3): 214-217.
[16]  施龙青, 张荣遨, 韩进, 等. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价[J]. 河南理工大学学报(自然科学版), 2020, 39(3): 17-25.
[17]  刘江明. 基于分形理论和层次分析法的岩溶富水规律及底板突水危险性评价[D]: [硕士学位论文]. 焦作: 河南理工大学, 2012.
[18]  李杨杨, 张士川, 孙煕震, 等. 煤层采动底板突水演变过程可视化试验平台研制与试验研究[J]. 煤炭学报, 2021, 46(11): 3515-3524.
[19]  刘伟韬, 孙茜, 徐百超. 基于GIS及主成分熵权法的底板突水危险性评价[J]. 矿业研究与开发, 2020, 40(11): 83-88.
[20]  武强, 张志龙, 马积福. 煤层底板突水评价的新型实用方法Ⅰ——主控指标体系的建设[J]. 煤炭学报, 2007, 32(1): 42-47.
[21]  Naghibi, S.A., Moghaddam, D.D., Kalantar, B., Pradhan, B. and Kisi, O. (2017) A Comparative Assessment of GIS-Based Data Mining Models and a Novel Ensemble Model in Groundwater Well Potential Mapping. Journal of Hydrology, 548, 471-483.
https://doi.org/10.1016/j.jhydrol.2017.03.020
[22]  Liu, S., Li, W., Qiao, W., Li, X., Wang, Q. and He, J. (2019) Zoning Method for Mining-Induced Environmental Engineering Geological Patterns Considering the Degree of Influence of Mining Activities on Phreatic Aquifer. Journal of Hydrology, 578, Article 124020.
https://doi.org/10.1016/j.jhydrol.2019.124020
[23]  Tzampoglou, P. and Loupasakis, C. (2017) Mining Geohazards Susceptibility and Risk Mapping: The Case of the Amyntaio Open-Pit Coal Mine, West Macedonia, Greece. Environmental Earth Sciences, 76, Article No. 542.
https://doi.org/10.1007/s12665-017-6866-4
[24]  Rahmati, O., Pourghasemi, H.R. and Melesse, A.M. (2016) Application of GIS-Based Data Driven Random Forest and Maximum Entropy Models for Groundwater Potential Mapping: A Case Study at Mehran Region, Iran. CATENA, 137, 360-372.
https://doi.org/10.1016/j.catena.2015.10.010
[25]  Chowdary, V.M., Chakraborthy, D., Jeyaram, A., Murthy, Y.V.N.K., Sharma, J.R. and Dadhwal, V.K. (2013) Multi-criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS. Water Resources Management, 27, 3555-3571.
https://doi.org/10.1007/s11269-013-0364-6
[26]  Vu, T.T.H., Tian, G., Khan, N., Zada, M., Zhang, B. and Nguyen, T.V. (2019) Evaluating the International Competitiveness of Vietnam Wood Processing Industry by Combining the Variation Coefficient and the Entropy Method. Forests, 10, Article 901.
https://doi.org/10.3390/f10100901
[27]  Aherwar, A., Pruncu, C.I. and Mia, M. (2021) Optimal Design Based on Fabricated SIC/B4C/Porcelain Filled Aluminium Alloy Matrix Composite Using Hybrid AHP/CRITIC-COPRAS Approach. Silicon, 14, 603-615.
https://doi.org/10.1007/s12633-020-00916-1
[28]  李博, 武强. 煤层底板突水危险性变权评价理论及其工程应用[J]. 应用基础与工程科学学报, 2017, 25(3): 500-508.
[29]  李博. 基于变权理论的煤层底板突水脆弱性评价[D]: [博士学位论文]. 北京: 中国矿业大学(北京), 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133