全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳酸盐岩边水气藏水侵规律研究现状与展望
Research Status and Prospects on Water Invasion Laws in Carbonate Gas Reservoirs with Edge Water

DOI: 10.12677/me.2024.124082, PP. 695-703

Keywords: 碳酸盐岩边水气藏,水侵问题,储层结构特征,气水两相渗流,水侵规律实验研究,动态数值模拟
Carbonate Gas Reservoir with Edge Water
, Water Invasion Problem, Reservoir Structure Characteristics, Gas-Water Two-Phase Flow, Experimental Research on Water Invasion Laws, Dynamic Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着21世纪以来我国天然气消费量的急剧增加以及对外依存度的持续提升,国内能源安全面临着严峻挑战。在此背景下,碳酸盐岩边水气藏的高效开发对于国家能源安全尤为重要。本文系统分析了碳酸盐岩边水气藏中的水侵问题,涵盖了储层结构特征、气水两相渗流特征、水侵规律实验研究以及水侵动态数值模拟与计算。研究显示:(1) 目前,储层孔隙结构表征技术多样化,但研究多集中在微小孔喉和裂缝,针对孔洞的描述以及它们之间的搭配关系、沟通情况及对渗透率的贡献率的研究仍显不足;(2) 现有实验模型难以开展缝洞型气藏的气水两相渗流特征研究;(3) 目前针对水侵规律实验研究较少,认识缺乏统一;(4) 通过分析生产动态资料、试井和物质平衡原理可以进行水侵识别与预测,但这些方法在早期阶段的识别效果受限或是要求多次试井。因此,未来的研究需要开发能承受更高压力和更大尺寸的实验模型、进行多参数大尺度的水侵规律模拟研究和基于实验研究并结合渗流力学与气藏工程等方法针对不同类型气藏建立水侵数学模型,以深化复杂气藏水侵动态的理解,为碳酸盐岩边水气藏的高效开发提供坚实的科学基础和技术支持。
With the rapid increase in natural gas consumption and the continuous rise in external dependence since the 21st century, China’s energy security is facing severe challenges. In this context, the efficient development of carbonate gas reservoirs with edge water is particularly important for national energy security. This paper systematically analyzes the water invasion problems in carbonate gas reservoirs with edge water, covering reservoir structure characteristics, gas-water two-phase flow characteristics, experimental research on water invasion laws, and dynamic numerical simulation and calculation of water invasion. The study shows that: (1) At present, reservoir pore structure characterization technology is diversified, but research is mainly focused on micro pores and fractures. The description of cavities, the matching relationships between them, communication situations, and their contribution rates to permeability are still insufficiently studied; (2) Existing experimental models are challenging for studying gas-water two-phase flow characteristics in fracture-cavity type gas reservoirs; (3) There is currently limited experimental research on water invasion laws, and the understanding is not unified; (4) Water invasion identification and prediction can be conducted through analysis of production dynamics data, well testing, and material balance principles, but these methods are limited in early-stage identification or require multiple well tests. Therefore, future research needs to develop experimental models that can withstand higher pressure and larger sizes, conduct multi-parameter large-scale simulations of water invasion laws, and establish mathematical models of water invasion for different types of gas reservoirs based on experimental research combined with seepage mechanics and gas reservoir engineering methods. This will deepen the understanding of water invasion dynamics in complex gas reservoirs and provide a solid scientific foundation and

References

[1]  雍锐, 胡勇, 彭先, 等. 四川盆地天然气藏提高采收率技术进展与发展方向[J]. 天然气工业, 2023, 43(1): 23-35.
[2]  张抗, 张立勤, 刘冬梅. 近年中国油气勘探开发形势及发展建议[J]. 石油学报, 2022, 43(1): 15-28, 111.
[3]  马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
[4]  李熙喆, 郭振华, 胡勇, 等. 中国超深层大气田高质量开发的挑战、对策与建议[J]. 天然气工业, 2020, 40(2): 75-82.
[5]  陈阳, 陈晶晶, 王克鑫, 等. 四川盆地龙王庙组储层溶蚀作用类型及特征[J]. 当代化工研究, 2016(8): 3-4.
[6]  高树生, 杨明翰, 叶礼友, 等. 低渗透底水气藏水侵动态模拟实验及其对采收率的影响[J]. 天然气工业, 2022, 42(3): 61-70.
[7]  胡勇, 陈颖莉, 李滔. 气田开发中“气藏整体治水”技术理念的形成、发展及理论内涵[J]. 天然气工业, 2022, 42(9): 10-20.
[8]  李熙喆, 刘晓华, 苏云河, 等. 中国大型气田井均动态储量与初始无阻流量定量关系的建立与应用[J]. 石油勘探与开发, 2018, 45(6): 1020-1025.
[9]  黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864.
[10]  李熙喆, 郭振华, 胡勇, 等. 中国超深层构造型大气田高效开发策略[J]. 石油勘探与开发, 2018, 45(1): 111-118.
[11]  Javadpour, F., Moravvej Farshi, M. and Amrein, M. (2012) Atomic-Force Microscopy: A New Tool for Gas-Shale Characterization. Journal of Canadian Petroleum Technology, 51, 236-243.
https://doi.org/10.2118/161015-pa
[12]  Zhu, X., Cai, J., Xu, X. and Xie, Z. (2013) Discussion on the Method for Determining BET Specific Surface Area in Argillaceous Source Rocks. Marine and Petroleum Geology, 48, 124-129.
https://doi.org/10.1016/j.marpetgeo.2013.08.003
[13]  刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300.
[14]  Melnichenko, Y.B., Radlinski, A.P., Mastalerz, M., Cheng, G. and Rupp, J. (2009) Characterization of the CO2 Fluid Adsorption in Coal as a Function of Pressure Using Neutron Scattering Techniques (SANS and USANS). International Journal of Coal Geology, 77, 69-79.
https://doi.org/10.1016/j.coal.2008.09.017
[15]  Mares, T.E., Radliński, A.P., Moore, T.A., Cookson, D., Thiyagarajan, P., Ilavsky, J., et al. (2009) Assessing the Potential for CO2 Adsorption in a Subbituminous Coal, Huntly Coalfield, New Zealand, Using Small Angle Scattering Techniques. International Journal of Coal Geology, 77, 54-68.
https://doi.org/10.1016/j.coal.2008.07.007
[16]  谭晓华, 彭港珍, 李晓平, 等. 考虑水封气影响的有水气藏物质平衡法及非均匀水侵模式划分[J]. 天然气工业, 2021, 41(3): 97-103.
[17]  Loucks, R.G., Reed, R.M., Ruppel, S.C. and Hammes, U. (2012) Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96, 1071-1098.
https://doi.org/10.1306/08171111061
[18]  Slatt, R.M. and O’Brien, N.R. (2011) Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95, 2017-2030.
https://doi.org/10.1306/03301110145
[19]  张文凯, 施泽进, 田亚铭, 等. 联合高压压汞和恒速压汞实验表征致密砂岩孔喉特征[J]. 断块油气田, 2021, 28(1): 14-20, 32.
[20]  刘标, 姚素平, 胡文瑄, 等. 核磁共振冻融法表征非常规油气储层孔隙的适用性[J]. 石油学报, 2017, 38(12): 1401-1410.
[21]  Fisher, Q.J., Cliff, R.A. and Dodson, M.H. (2003) U-Pb Systematics of an Upper Carboniferous Black Shale from South Yorkshire, UK. Chemical Geology, 194, 331-347.
https://doi.org/10.1016/s0009-2541(02)00383-2
[22]  Bahadur, J., Melnichenko, Y.B., Mastalerz, M., Furmann, A. and Clarkson, C.R. (2014) Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study. Energy & Fuels, 28, 6336-6344.
https://doi.org/10.1021/ef501832k
[23]  彭军, 韩浩东, 夏青松, 等. 深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理——以塔里木盆地顺托果勒地区柯坪塔格组为例[J]. 石油学报, 2018, 39(7): 775-791.
[24]  孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 43(3): 490-498.
[25]  朱汉卿, 贾爱林, 位云生, 等. 低温氩气吸附实验在页岩储层微观孔隙结构表征中的应用[J]. 石油实验地质, 2018, 40(4): 559-565.
[26]  Mo, F., Peng, X., Devegowda, D., Du, Z., Qi, Z., Tang, Y., et al. (2020) Permeability Jail for Two-Phase Flow in Tight Sandstones: Formulation, Application and Sensitivity Studies. Journal of Petroleum Science and Engineering, 184, Article ID: 106583.
https://doi.org/10.1016/j.petrol.2019.106583
[27]  Shanley, K.W., Cluff, R.M. and Robinson, J.W. (2004) Factors Controlling Prolific Gas Production from Low-Permeability Sandstone Reservoirs: Implications for Resource Assessment, Prospect Development, and Risk Analysis. AAPG Bulletin, 88, 1083-1121.
https://doi.org/10.1306/03250403051
[28]  莫邵元, 何顺利, 雷刚, 等. 致密气藏气水相对渗透率理论及实验分析[J]. 天然气地球科学, 2015, 26(11): 2149-2154.
[29]  刘宇展, 潘毅, 郑小敏, 等. 致密气藏岩石应力敏感对气水两相渗流特征的影响[J]. 复杂油气藏, 2013, 6(3): 36-39.
[30]  郭肖, 杜志敏, 姜贻伟, 等. 温度和压力对气水相对渗透率的影响[J]. 天然气工业, 2014, 34(6): 60-64.
[31]  Li, K. and Horne, R.N. (2004) Experimental Study of Gas Slippage in Two-Phase Flow. SPE Reservoir Evaluation & Engineering, 7, 409-415.
https://doi.org/10.2118/89038-pa
[32]  方建龙, 郭平, 肖香姣, 等. 高温高压致密砂岩储集层气水相渗曲线测试方法[J]. 石油勘探与开发, 2015, 42(1): 84-87.
[33]  李程辉, 李熙喆, 高树生, 等. 碳酸盐岩储集层气水两相渗流实验与气井流入动态曲线-以高石梯-磨溪区块龙王庙组和灯影组为例[J]. 石油勘探与开发, 2017, 44(6): 930-938.
[34]  华锐湘, 贾英兰, 李清, 等. 涩北气田气水分布及气水运动规律分析[J]. 天然气工业, 2009, 29(7): 68-71, 139-140.
[35]  陈朝晖, 谢一婷, 邓勇. 涩北气田疏松砂岩气藏微观气水驱替实验[J]. 西南石油大学学报(自然科学版), 2013(4): 139-144.
[36]  鄢友军, 陈俊宇, 郭静姝, 等. 龙岗地区储层微观鲕粒模型气水两相渗流可视化实验及分析[J]. 天然气工业, 2012, 32(1): 64-66.
[37]  李登伟, 张烈辉, 周克明, 等. 可视化微观孔隙模型中气水两相渗流机理[J]. 中国石油大学学报(自然科学版), 2008, 32(3): 80-83.
[38]  周克明, 李宁, 张清秀, 等. 气水两相渗流及封闭气的形成机理实验研究[J]. 天然气工业, 2002, 22(z1): 122-125.
[39]  Persoff, P. and Pruess, K. (1995) Two‐phase Flow Visualization and Relative Permeability Measurement in Natural Rough‐walled Rock Fractures. Water Resources Research, 31, 1175-1186.
https://doi.org/10.1029/95wr00171
[40]  朱华银, 周娟, 万玉金, 等. 多孔介质中气水渗流的微观机理研究[J]. 石油实验地质, 2004, 26(6): 571-573.
[41]  樊怀才, 钟兵, 李晓平, 等. 裂缝型产水气藏水侵机理研究[J]. 天然气地球科学, 2012, 23(6): 1179-1184.
[42]  焦春艳, 朱华银, 胡勇, 等. 底水气藏水侵物理模拟实验与数学模型[J]. 科学技术与工程, 2014, 14(10): 191-194.
[43]  沈伟军, 李熙喆, 刘晓华, 等. 裂缝性气藏水侵机理物理模拟[J]. 中南大学学报(自然科学版), 2014, 45(9): 3283-3287.
[44]  刘华勋, 任东, 高树生, 等. 边、底水气藏水侵机理与开发对策[J]. 天然气工业, 2015, 35(2): 47-53.
[45]  胡勇, 李熙喆, 万玉金, 等. 裂缝气藏水侵机理及对开发影响实验研究[J]. 天然气地球科学, 2016, 27(5): 910-917.
[46]  Su, G.W., Geller, J.T., Pruess, K. and Wen, F. (1999) Experimental Studies of Water Seepage and Intermittent Flow in Unsaturated, Rough‐Walled Fractures. Water Resources Research, 35, 1019-1037.
https://doi.org/10.1029/1998wr900127
[47]  Shen, W., Liu, X., Li, X. and Lu, J. (2015) Water Coning Mechanism in Tarim Fractured Sandstone Gas Reservoirs. Journal of Central South University, 22, 344-349.
https://doi.org/10.1007/s11771-015-2528-4
[48]  Qi, Z., Li, J., Hu, S., Liang, B., Yuan, Y. and Jiang, N. (2019) Mathematical Model for Prediction of Dynamic Reserves Loss Due to Water Invasion in Water-Drive Gas Reservoir. Journal of Porous Media, 22, 1507-1518.
https://doi.org/10.1615/jpormedia.2019026226
[49]  Shen, W.J., Li, X.Z., Liu, X.H. and Lu, J.L. (2014) Analytical Comparisons of Water Coning in Oil and Gas Reservoirs before and after Water Breakthrough. Electronic Journal of Geotechnical Engineering, 19, 6747-6756.
[50]  Yildiz, T. and Khosravi, A. (2007) An Analytical Bottomwaterdrive Aquifer Model for Material-Balance Analysis. SPE Reservoir Evaluation & Engineering, 10, 618-628.
https://doi.org/10.2118/103283-pa
[51]  王海栋, 刘义坤, 王凤娇, 等. 深海底水气藏水侵规律与水侵风险识别方法[J]. 天然气工业, 2020, 40(12): 71-79.
[52]  Dikken, B.J. (1990) Pressure Drop in Horizontal Wells and Its Effect on Production Performance. Journal of Petroleum Technology, 42, 1426-1433.
https://doi.org/10.2118/19824-pa
[53]  Hatiboglu, C.U. and Babadagli, T. (2010) Experimental and Visual Analysis of Diffusive Mass Transfer between Matrix and Fracture under Static Conditions. Journal of Petroleum Science and Engineering, 74, 31-40.
https://doi.org/10.1016/j.petrol.2010.08.004
[54]  Liang, Y., Li, Q., Gu, Y. and Zou, Q. (2017) Mechanical and Acoustic Emission Characteristics of Rock: Effect of Loading and Unloading Confining Pressure at the Postpeak Stage. Journal of Natural Gas Science and Engineering, 44, 54-64.
https://doi.org/10.1016/j.jngse.2017.04.012
[55]  赵林. 基于机器学习算法的气藏水侵数值试井方法研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2021.
[56]  李虹. 裂缝性致密砂岩气藏数值模拟研究及应用[D]: [博士学位论文]. 北京: 中国石油大学, 2022.
[57]  Zeng, D., Peng, X., Fu, D., Hu, J., Wu, X. and Zhang, J. (2019) Development Dynamic Monitoring Technologies Used in the Puguang High-Sulfur Gas Field. Natural Gas Industry B, 6, 191-197.
https://doi.org/10.1016/j.ngib.2018.10.001
[58]  Ahmadi, M.A., Ebadi, M. and Hosseini, S.M. (2014) Prediction Breakthrough Time of Water Coning in the Fractured Reservoirs by Implementing Low Parameter Support Vector Machine Approach. Fuel, 117, 579-589.
https://doi.org/10.1016/j.fuel.2013.09.071
[59]  冯曦, 杨学锋, 邓惠, 等. 根据水区压力变化特征辨识高含硫边水气藏水侵规律[J]. 天然气工业, 2013, 33(1): 75-78.
[60]  唐雪清, 宋雪莲. 产水气井压力恢复特征的新认识[J]. 油气井测试, 1999, 8(3): 57-59.
[61]  陶诗平, 冯曦, 肖世洪. 应用不稳定试井分析方法识别气藏早期水侵[J]. 天然气工业, 2003, 23(4): 68-70.
[62]  何晓东, 邹绍林, 卢晓敏. 边水气藏水侵特征识别及机理初探[J]. 天然气工业, 2006, 26(3): 87-89.
[63]  李涛. 普光气田开发过程水侵特征分析[J]. 天然气工业, 2014, 34(6): 65-71.
[64]  陈元千. 气田天然水侵的判断方法[J]. 石油勘探与开发, 1978(3): 54-60.
[65]  Coats, K.H. (1962) A Mathematical Model Water Movement about Bottom-Water-Drive Reservoirs. Society of Petroleum Engineers Journal, 2, 44-52.
https://doi.org/10.2118/160-pa
[66]  Allard, D.R. and Chen, S.M. (1988) Calculation of Water Influx for Bottomwater Drive Reservoirs. SPE Reservoir Engineering, 3, 369-379.
https://doi.org/10.2118/13170-pa
[67]  刘蜀知, 孙艾茵, 黄炳光, 等. 水侵气藏水侵量与地层压力预测方法研究[J]. 石油勘探与开发, 1999, 26(2): 99-101.
[68]  Abdel Azim, R. (2015) Evaluation of Water Coning Phenomenon in Naturally Fractured Oil Reservoirs. Journal of Petroleum Exploration and Production Technology, 6, 279-291.
https://doi.org/10.1007/s13202-015-0185-7
[69]  Kabir, C.S., Parekh, B. and Mustafa, M.A. (2016) Material-Balance Analysis of Gas and Gas-Condensate Reservoirs with Diverse Drive Mechanisms. Journal of Natural Gas Science and Engineering, 32, 158-173.
https://doi.org/10.1016/j.jngse.2016.04.004
[70]  张新征, 张烈辉, 李玉林, 等. 预测裂缝型有水气藏早期水侵动态的新方法[J]. 西南石油大学学报, 2007, 29(5): 82-85.
[71]  孙薇, 王淑玉, 杨会朋, 等. 考虑水侵强度的裂缝性水驱气藏物质平衡方法[J]. 油气地质与采收率, 2009, 16(3): 85-87.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133