全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RFBC模型与聚类分析的电商用户细分研究
Research on E-Commerce Customer Segmentation Based on RFBC Model and Clustering Algorithm

DOI: 10.12677/aam.2024.1310426, PP. 4464-4470

Keywords: 用户细分,RFM模型,k-means聚类
Customer Segmentation
, RFM Model, k-means Clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

在电子商务领域,消费者的行为数据具有高维度和复杂性。针对传统RFM模型的局限性,本研究提出了一种改进的RFBC模型。该模型结合了购买商品品牌数和购买商品类别数两个新维度,采用k-means++算法进行用户细分,并根据手肘法来确定最佳的聚类数k。由此得到具有不同购买行为特征的六类用户群体,基于这些群体特征,制定出个性化营销策略,使企业在激烈的市场竞争中获取优势。
In the field of e-commerce, consumer behavior data has a high dimension and complexity. Aiming at the limitations of the traditional RFM model, an improved RFBC model is proposed in this paper. The model combines two new dimensions, the number of brands purchased and the number of categories purchased, and uses the k-means++ algorithm to subdivide users, determining the optimal clustering number k according to the elbow method. Thus, six types of user groups with different purchasing behavior characteristics are obtained. Based on these group characteristics, personalized marketing strategies are formulated to enable enterprises to gain advantages in the fierce market competition.

References

[1]  央视网. 2023年我国网上零售额超15万亿元[EB/OL]. 中国政府网.
https://www.gov.cn/yaowen/shipin/202401/content_6927216.htm, 2024-01-19.
[2]  徐翔斌, 王佳强, 涂欢, 等. 基于改进RFM模型的电子商务客户细分[J]. 计算机应用, 2012, 32(5): 1439-1442.
[3]  熊兰, 高炳. 基于RFM多层级客户价值模型的客户细分研究[J]. 商业经济研究, 2017(5): 55-57.
[4]  包志强, 赵媛媛, 赵研, 等. 基于RFA模型和聚类分析的百度外卖客户细分[J]. 计算机科学, 2018, 45(S2): 436-438.
[5]  Zhou, J., Wei, J. and Xu, B. (2021) Customer Segmentation by Web Content Mining. Journal of Retailing and Consumer Services, 61, Article 102588.
https://doi.org/10.1016/j.jretconser.2021.102588
[6]  Rahim, M.A., Mushafiq, M., Khan, S. and Arain, Z.A. (2021) Rfm-Based Repurchase Behavior for Customer Classification and Segmentation. Journal of Retailing and Consumer Services, 61, Article 102566.
https://doi.org/10.1016/j.jretconser.2021.102566
[7]  Wu, Z., Jin, L., Zhao, J., Jing, L. and Chen, L. (2022) Research on Segmenting E-Commerce Customer through an Improved K-Medoids Clustering Algorithm. Computational Intelligence and Neuroscience, 2022, 1-10.
https://doi.org/10.1155/2022/9930613
[8]  Wu, J., Shi, L., Yang, L., Niu, X., Li, Y., Cui, X., et al. (2021) User Value Identification Based on Improved RFM Model and k‐Means++ Algorithm for Complex Data Analysis. Wireless Communications and Mobile Computing, 2021, 1-8.
https://doi.org/10.1155/2021/9982484

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133