Prevalence and Antibiotic Resistance of Urinary Tract Pathogens, with Molecular Identification of Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp., Using Multiplex Real-Time PCR
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
References
[1]
Kiros, T., et al. (2023) Bacterial Etiology of Urinary Tract Infection and Antibiogram Profile in Children Attending Debre Tabor Comprehensive Specialized Hospital, Northwest Ethiopia. Interdisciplinary Perspectives on Infectious Diseases, 2023, Article ID: 1035113.
[2]
Xu, Y., Zhu, F., Zhou, Z., Ma, S., Zhang, P., Tan, C., et al. (2024) A Novel mRNA Multi-Epitope Vaccine of Acinetobacter Baumannii Based on Multi-Target Protein Design in Immunoinformatic Approach. BMCGenomics, 25, Article No. 791. https://doi.org/10.1186/s12864-024-10691-7
[3]
Dissinviel, S.K., Nathalie, G., Juste, I.B., Mohamed, B.O., Fernique, K., Abraham, A., et al. (2017) Prevalence and Resistance Profile of Extended-Spectrum-Lactamases-Producing Enterobacteriaceae in Ouagadougou, Burkina Faso. AfricanJournalofMicrobiologyResearch, 11, 1120-1126. https://doi.org/10.5897/ajmr2017.8598
[4]
Salah, F.D., Soubeiga, S.T., Ouattara, A.K., Sadji, A.Y., Metuor-Dabire, A., Obiri-Yeboah, D., et al. (2019) Distribution of Quinolone Resistance Gene (qnr) in ESBL-Producing Escherichia coli and Klebsiella spp. in Lomé, Togo. AntimicrobialResistance&InfectionControl, 8, Article No. 104. https://doi.org/10.1186/s13756-019-0552-0
[5]
Kpoda, D.S., Guessennd, N., Somda, N.S., Ajayi, A., Bonkoungou, J.I., Konan, F., et al. (2017) Antimicrobial Susceptibility of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Causing Urinary Tract Infections in Ouagadougou, Burkina Faso. AfricanJournalofClinicalandExperimentalMicrobiology, 18, 139-144. https://doi.org/10.4314/ajcem.v18i3.2
[6]
Diagbouga, S., Salah, F.D., et al. (2016) Detection of High Prevalence of TEM/SHV/CTX-M Genes in ESBL Producing and Multidrug Resistant Klebsiella pneumoniae and Klebsiella oxytoca. JBR Journal of Clinical DiagnosisandResearch, 4, Article 130. https://doi.org/10.4172/2376-0311.1000130
[7]
Addis, T., Mekonnen, Y., Ayenew, Z., Fentaw, S. and Biazin, H. (2021) Bacterial Uropathogens and Burden of Antimicrobial Resistance Pattern in Urine Specimens Referred to Ethiopian Public Health Institute. PLOSONE, 16, e0259602. https://doi.org/10.1371/journal.pone.0259602
[8]
Mouanga Ndzime, Y., Onanga, R., Kassa Kassa, R.F., Bignoumba, M., Mbehang Nguema, P.P., Gafou, A., et al. (2021) Epidemiology of Community Origin Escherichia coli and Klebsiellapneumoniae Uropathogenic Strains Resistant to Antibiotics in Franceville, Gabon. InfectionandDrugResistance, 14, 585-594. https://doi.org/10.2147/idr.s296054
[9]
Bent, S. (2002) Does This Woman Have an Acute Uncomplicated Urinary Tract Infection? JAMA, 287, 2701-2710. https://doi.org/10.1001/jama.287.20.2701
[10]
Tuon, F.F., Zequinao, T., da Silva, M.S. and Silva, K.O. (2024) eHealth and mHealth in Antimicrobial Stewardship to Reduce Mortality in Empirical Antimicrobial Therapy and a Systematic Review with a Meta-Analysis of Adequate Therapy. InfectiousDiseaseReports, 16, 707-723. https://doi.org/10.3390/idr16040054
[11]
Bunduki, G.K., Masoamphambe, E., Fox, T., Musaya, J., Musicha, P. and Feasey, N. (2024) Prevalence, Risk Factors, and Antimicrobial Resistance of Endemic Healthcare-Associated Infections in Africa: A Systematic Review and Meta-Analysis. BMCInfectiousDiseases, 24, Article No. 158. https://doi.org/10.1186/s12879-024-09038-0
[12]
Mbuvi, C.M., Musila, B.N. and Nyamache, A.K. (2024) Urogenital Infections among Women Attending Mwingi Hospital, Kitui County, Kenya: Safeguarding Antibiotics Through Microbiological Diagnosis. TheEastAfrican Health Research Journal, 8, 99-105.
[13]
Spurbeck, R.R., Dinh, P.C., Walk, S.T., Stapleton, A.E., Hooton, T.M., Nolan, L.K., et al. (2012) Escherichia coli Isolates That Carry vat, fyuA, chuA, and yfcV Efficiently Colonize the Urinary Tract. InfectionandImmunity, 80, 4115-4122. https://doi.org/10.1128/iai.00752-12
[14]
Broeren, M.A.C., Bahçeci, S., Vader, H.L. and Arents, N.L.A. (2011) Screening for Urinary Tract Infection with the Sysmex Uf-1000i Urine Flow Cytometer. JournalofClinicalMicrobiology, 49, 1025-1029. https://doi.org/10.1128/jcm.01669-10
[15]
van der Kolk, J.H., Endimiani, A., Graubner, C., Gerber, V. and Perreten, V. (2019) Acinetobacter in Veterinary Medicine, with an Emphasis on Acinetobacter Baumannii. JournalofGlobalAntimicrobialResistance, 16, 59-71. https://doi.org/10.1016/j.jgar.2018.08.011
[16]
Sagna, T., Somda, W.D.N., Koné, A., Sagna, Y., Tialla, D., et al. (2019) Antibiotic Susceptibility of Escherichia coli and Klebsiellapneumoniae Strains, Urinary Tract Infections Cases in Bobo-Dioulasso, Burkina Faso. ECMicrobiology, 15, 172-178. https://ecronicon.net/assets/ecmi/pdf/ECMI-15-00605.pdf
[17]
Soula, G., Pichard, E., Soula, G.G. and Kodio, A. (1990) Étude bactériologique des infections Urinaires à Bamako: Orientation pratique. Médecine d’Afrique Noire, 37, 243-249. https://www.santetropicale.com/Resume/53703.pdf
[18]
Gambrah, E., Owusu-Ofori, A., Biney, E., Oppong, C. and Coffin, S.E. (2021) Diagnosis and Treatment of Urinary Tract Infections in Hospitalized Adults in Ghana: The Role of the Clinical Microbiology Laboratory in Improving Antimicrobial Stewardship. InternationalJournalofInfectiousDiseases, 102, 497-500. https://doi.org/10.1016/j.ijid.2020.10.068
[19]
Yandai, F.H., Ndoutamia, G., Nadlaou, B. and Barro, N. (2019) Prevalence and Resistance Profile of escherichia Coli and klebsiellaPneumoniae Isolated from Urinary Tract Infections in N’djamena, Tchad. InternationalJournalofBiologicalandChemicalSciences, 13, 2065-2073. https://doi.org/10.4314/ijbcs.v13i4.13
[20]
Nzalie, R.N., Gonsu, H.K. and Koulla-Shiro, S. (2016) Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City. InternationalJournalofMicrobiology, 2016, Article ID: 3240268. https://doi.org/10.1155/2016/3240268
[21]
El bouamri, M.C., Arsalane, L., Kamouni, Y., Yahyaoui, H., Bennouar, N., Berraha, M., et al. (2014) Profil actuel de résistance aux antibiotiques des souches d’Escherichia coli uropathogènes et conséquences thérapeutiques [Current Antibiotic Resistance Profile of Uropathogenic Escherichia coli Strains and Therapeutic Consequences]. ProgrèsenUrologie, 24, 1058-1062. https://doi.org/10.1016/j.purol.2014.09.035
[22]
Karou, S.D., Ilboudo, D.P., Nadembega, W.M.C., Ameyapoh, Y., Ouermi, D., Pignatelli, S., et al. (2009) Antibiotic Resistance in Urinary Tract Bacteria in Ouagadougou. PakistanJournalofBiologicalSciences, 12, 712-716. https://doi.org/10.3923/pjbs.2009.712.716
[23]
Savadogo, H., Dao, L., Tondé, I., Tamini/Toguyeni, L., Ouédraogo, A.I., Ouermi, A.S., et al. (2021) Infections du tractus urinaire en milieu pédiatrique: Écologie bactérienne et sensibilité aux antibiotiques au Centre hospitalier universitaire pédiatrique Charles-de-Gaulle de Ouagadougou (Burkina Faso). Néphrologie & Thérapeutique, 17, 532-537. https://doi.org/10.1016/j.nephro.2021.04.003
[24]
Turugurwa, J., Mwesigye, J., Kassaza, K., Byarugaba, F., Kabanda, T. and Musinguzi, B. (2019) Antimicrobial Resistance Patterns and Molecular Characterization of Klebsiellapneumoniae in Clinical Isolates at Mbarara Regional Referral Hospital. AdvancesinInfectiousDiseases, 9, 197-225. https://doi.org/10.4236/aid.2019.93015
[25]
Niang, A., Ka, R., Sarr, H. and Diop, A. (2020) Phenotypic Characterization of Uropathogenic Bacteria Isolated at Fann CHNU. DakarUro’Andro, 2, 56-60.
[26]
Dia, M., Chabouny, H., Diagne, R., Kâ, R. and Ba-Diallo, A. (2014) Antibiotic Susceptibility Pattern of Uropathogenic Bacterial Isolates in a Dakar Senegalese Teaching. Uro’andro, 2, 71-78.
[27]
Adeleye, Q., Ndubuisi, E. and Isa, F. (2024) Etiologic and Anti-Microbial Susceptibility Profiles of Bacterial Urinary Tract Infection and Bacterial Enteritis among Children at a Private Multi-Specialty Healthcare Facility in Abuja, Nigeria: A 5-Year Separate and Comparative Review. NigerianJournalofClinicalPractice, 27, 35-46. https://doi.org/10.4103/njcp.njcp_299_23
[28]
Kebbeh, A., Dsane-Aidoo, P., Sanyang, K., Darboe, S.M.K., Fofana, N., Ameme, D., et al. (2023) Antibiotics Susceptibility Patterns of Uropathogenic Bacteria: A Cross-Sectional Analytic Study at Kanifing General Hospital, the Gambia. BMCInfectiousDiseases, 23, Article No. 723. https://doi.org/10.1186/s12879-023-08373-y
[29]
Leotard, S. and Negrin, N. (2010) Épidémiologie des entérobactéries sécrétrices de bêta-lactamases à spectre étendu (E-BLSE) au centre hospitalier de Grasse (2005-2008) [Epidemiology of Enterobacteriaceae Producing Extended-Spectrum β-Lactamase in Grasse Hospital (2005-2008)]. PathologieBiologie, 58, 35-38. https://doi.org/10.1016/j.patbio.2009.07.014
[30]
Bohlen, J., Zhou, Q., Philippot, Q., Ogishi, M., Rinchai, D., Nieminen, T., et al. (2023) Human Mcts1-Dependent Translation of JAK2 Is Essential for Ifn-γ Immunity to Mycobacteria. Cell, 186, 5114-5134.e27. https://doi.org/10.1016/j.cell.2023.09.024
[31]
Beegle, K., Demombynes, G., de Walque, D., Gubbins, P. and Veillard, J. (2024) COVID-19 Increased Existing Gender Mortality Gaps in High Income More than Middle Income Countries. InternationalJournalofInfectiousDiseases. https://doi.org/10.1016/j.ijid.2024.107167
[32]
Ahmadpour, E., Valilou, S., Ghanizadegan, M.A., Seyfi, R., Hosseini, S.A., Hatam-Nahavandi, K., et al. (2024) Global Prevalence, Mortality, and Main Characteristics of Hiv-Associated Pneumocystosis: A Systematic Review and Meta-Analysis. PLOSONE, 19, e0297619. https://doi.org/10.1371/journal.pone.0297619
[33]
Asamoah, B., Labi, A., Gupte, H.A., Davtyan, H., Peprah, G.M., Adu-Gyan, F., et al. (2022) High Resistance to Antibiotics Recommended in Standard Treatment Guidelines in Ghana: A Cross-Sectional Study of Antimicrobial Resistance Patterns in Patients with Urinary Tract Infections between 2017-2021. InternationalJournalofEnvironmentalResearchandPublicHealth, 19, Article 16556. https://doi.org/10.3390/ijerph192416556
[34]
Adekanmbi, A.O., Akinlabi, O.C., Usidamen, S., Olaposi, A.V. and Olaniyan, A.B. (2022) High Burden of ESBL-Producing Klebsiella Spp., Proteus Mirabilis, Enterobacter Cloacae and Pseudomonas Aeruginosa in Diagnosed Cases of Urinary Tract Infection in a Nigerian Teaching Hospital. ActaMicrobiologicaetImmunologicaHungarica, 69, 127-134. https://doi.org/10.1556/030.2022.01747
[35]
Campbell, J.S.O., van Henten, S., Koroma, Z., Kamara, I.F., Kamara, G.N., Shewade, H.D., et al. (2022) Culture Requests and Multi-Drug Resistance among Suspected Urinary Tract Infections in Two Tertiary Hospitals in Freetown, Sierra Leone (2017-21): A Cross-Sectional Study. InternationalJournalofEnvironmentalResearchandPublicHealth, 19, Article 4865. https://doi.org/10.3390/ijerph19084865
[36]
Wang, Z., Chen, J., You, Z., Liu, X. and Zhang, J. (2024) [Advances in Mechanisms of Biofilm Formation and Drug Resistance of Staphylococcusaureus]. Chinese Journal of Biotechnology, 40, 2038-2051.
[37]
Brintz, B.J., Madaras-Kelly, K., Nevers, M., Echevarria, K.L., Goetz, M.B. and Samore, M.H. (2024) Predicting Antibiotic Resistance in Enterobacterales to Support Optimal Empiric Treatment of Urinary Tract Infections in Outpatient Veterans. AntimicrobialStewardship&HealthcareEpidemiology, 4, e118. https://doi.org/10.1017/ash.2024.377
[38]
Xu, R., Deebel, N., Casals, R., Dutta, R. and Mirzazadeh, M. (2021) A New Gold Rush: A Review of Current and Developing Diagnostic Tools for Urinary Tract Infections. Diagnostics, 11, Article 479. https://doi.org/10.3390/diagnostics11030479
[39]
(2022) Real Time PCR Kit for Detection of DNA of Opportunistic Bacteria of the Classes Bacilli, β-Proteobacteria and γ-Proteobacteria Causing Nosocomial and Community-Acquired Infections. Sacace™ Bac Multi-Screen Real-TM Handbook.
[40]
Bekeris, L.G., Jones, B.A., Walsh, M.K. and Wagar, E.A. (2008) Urine Culture Contamination: A College of American Pathologists Q-Probes Study of 127 Laboratories. ArchivesofPathology&LaboratoryMedicine, 132, 913-917. https://doi.org/10.5858/2008-132-913-uccaco
[41]
LaRocco, M.T., Franek, J., Leibach, E.K., Weissfeld, A.S., Kraft, C.S., Sautter, R.L., et al. (2016) Effectiveness of Preanalytic Practices on Contamination and Diagnostic Accuracy of Urine Cultures: A Laboratory Medicine Best Practices Systematic Review and Meta-Analysis. ClinicalMicrobiologyReviews, 29, 105-147. https://doi.org/10.1128/cmr.00030-15
[42]
Valentine-King, M.A. and Brown, M.B. (2017) Antibacterial Resistance in Ureaplasma Species and Mycoplasma Hominis Isolates from Urine Cultures in College-Aged Females. AntimicrobialAgentsandChemotherapy, 61, e01104-17. https://doi.org/10.1128/aac.01104-17
[43]
Elnifro, E.M., Ashshi, A.M., Cooper, R.J. and Klapper, P.E. (2000) Multiplex PCR: Optimization and Application in Diagnostic Virology. ClinicalMicrobiologyReviews, 13, 559-570. https://doi.org/10.1128/cmr.13.4.559-570.2000
[44]
Gaydos, C.A., Theodore, M., Dalesio, N., Wood, B.J. and Quinn, T.C. (2004) Comparison of Three Nucleic Acid Amplification Tests for Detection of chlamydiaTrachomatis in Urine Specimens. JournalofClinicalMicrobiology, 42, 3041-3045. https://doi.org/10.1128/jcm.42.7.3041-3045.2004
[45]
Pillay, A., Radebe, F., Fehler, G., Htun, Y. and Ballard, R.C. (2006) Comparison of a Taqman-Based Real-Time Polymerase Chain Reaction with Conventional Tests for the Detection of Trichomonas Vaginalis. SexuallyTransmittedInfections, 83, 126-129. https://doi.org/10.1136/sti.2006.022376
[46]
Wojno, K.J., Baunoch, D., Luke, N., Opel, M., Korman, H., Kelly, C., et al. (2020) Multiplex PCR Based Urinary Tract Infection (UTI) Analysis Compared to Traditional Urine Culture in Identifying Significant Pathogens in Symptomatic Patients. Urology, 136, 119-126. https://doi.org/10.1016/j.urology.2019.10.018