Rare earth elements (REEs) are beneficial in developing modern technologies, especially electronics. Their extractions from natural deposits and their recycling require chemical processes that should be monitored regarding efficiency and environmental sustainability. The purpose of this study is to develop impedimetric sensors for the sensitive detection of the rare earth elements La and Ce by modifying a platinum electrode with four isosorbide-based oligo (ether sulfone)s. These oligomers, functionalized with different end groups (hydroxyl, fluor, amine, maleimide), were obtained with satisfactory yields, starting from isosorbide and bis (4-fuorophenyl) sulphone monomers. The resulting oligomers were characterized by NMR, DSC, and ATG analysis. The dihydroxy-oligo (ether sulfone) modified sensor showed the highest analytical performance compared to the other oligomers. The detection limit is 10?9 M for La and 3 × 10?9 M for Ce which is lower than that of most of the published electrochemical sensors.
References
[1]
BRGM (2022) Les Terres Rares. Dossier “Enjeux des Géosciences”. https://www.brgm.fr
[2]
European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Grohol, M. and Veeh, C. (2023) Study on the Critical Raw Materials for the EU 2023. https://data.europa.eu/doi/10.2873/725585
[3]
Ali, S. (2014) Social and Environmental Impact of the Rare Earth Industries. Resources, 3, 123-134. https://doi.org/10.3390/resources3010123
[4]
Zapp, P., Schreiber, A., Marx, J. and Kuckshinrichs, W. (2022) Environmental Impacts of Rare Earth Production. MRS Bulletin, 47, 267-275. https://doi.org/10.1557/s43577-022-00286-6
[5]
Sitko, R., Janik, P., Zawisza, B., Talik, E., Margui, E. and Queralt, I. (2015) Green Approach for Ultratrace Determination of Divalent Metal Ions and Arsenic Species Using Total-Reflection X-Ray Fluorescence Spectrometry and Mercapto-Modified Graphene Oxide Nanosheets as a Novel Adsorbent. Analytical Chemistry, 87, 3535-3542. https://doi.org/10.1021/acs.analchem.5b00283
[6]
Borai, E., Ekhlom, P. and Harjula, R. (2014) Group Separation of Heavy Metals Followed by Subsequent and Individual Separation of Lanthanides by Chelation Chromatography. Journal of Liquid Chromatography & Related Technologies, 37, 1614-1631. https://doi.org/10.1080/10826076.2013.803204
[7]
He, M., Hu, B. and Jiang, Z. (2005) Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Amount of Lanthanides and Yttrium in Soil with Polytetrafluroethylene Emulsion as a Chemical Modifier. Analytica Chimica Acta, 530, 105-112. https://doi.org/10.1016/j.aca.2004.08.074
[8]
Buseth, E., Wibetoe, G. and Martinsen, I. (1998) Determination of Endogenous Concentrations of the Lanthanides in Body Fluids and Tissues Using Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 13, 1039-1049. https://doi.org/10.1039/a801612g
[9]
Cao, X.D., Yin, M., Wang, X.R. and Zhao, G.W. (1999) Determination of Trace Rare Earth Elements in Soils by Inductively Coupled Plasma-Mass Spectrometry after Microwave Digestion for Sample Preparation. Chinese Journal of Analytical Chemistry, 27, 679-683.
[10]
Yelkenci, H.E. and Öztekin, N. (2016) Separation and Sensitive Detection of Lanthanides by Capillary Electrophoresis and Contactless Conductivity Detection. Journal of Chromatographic Science, 55, 465-470. https://doi.org/10.1093/chromsci/bmw200
[11]
Hirokawa, T. and Hashimoto, Y. (1997) Simultaneous Separation of Yttrium and Lanthanide Ions by Isotachophoresis. Journal of Chromatography A, 772, 357-367. https://doi.org/10.1016/s0021-9673(97)00055-1
[12]
Nukatsuka, I., Taga, M. and Yoshida, H. (1981) Separation of Lanthanides by Capillary Tube Isotachophoresis Using Complex-Forming Equilibria. Journal of Chromatography A, 205, 95-102. https://doi.org/10.1016/s0021-9673(00)81817-8
[13]
Hirokawa, T., Xia, W. and Kiso, Y. (1995) Isotachophoretic Separation of Rare Earth Ions I. Separation Behaviour of Yttrium and Fourteen Lanthanide Ions Forming Complexes with Tartaric Acid and Α-Hydroxyisobutyric Acid. Journal of Chromatography A, 689, 149-156. https://doi.org/10.1016/0021-9673(94)00872-7
[14]
Hirokawa, T., Aoki, N. and Kiso, Y. (1984) Complex-Forming Equilibria in Isotachophoresis. VI. Simulation of Isotachophoretic Equilibria of Lathanoids and Determination Mobilities and Stability Constants of Acetate and β-Hydroxyisobutyrate Complexes. Journal of Chromatography A, 312, 11-29. https://doi.org/10.1016/s0021-9673(01)92760-8
[15]
Mao, Q., Hashimoto, Y., Manabe, Y., Ikuta, N., Nishiyama, F. and Hirokawa, T. (1998) Separation of Rare-Earth Ions by Isotachophoresis and Capillary Zone Electrophoresis. Journal of Chromatography A, 802, 203-210. https://doi.org/10.1016/s0021-9673(97)01093-5
[16]
Lombard, S.M. and Isenhour, T.L. (1969) Determination of Samarium and Gadolinium in Rare Earth Ores by Neutron-Capture Gamma-Ray Activation Analysis. Analytical Chemistry, 41, 1113-1116. https://doi.org/10.1021/ac60277a039
[17]
Paderni, D., Giorgi, L., Fusi, V., Formica, M., Ambrosi, G. and Micheloni, M. (2021) Chemical Sensors for Rare Earth Metal Ions. Coordination Chemistry Reviews, 429, Article ID: 213639. https://doi.org/10.1016/j.ccr.2020.213639
[18]
Alenazi, N.A., Alam, M.M., Hussein, M.A., Alamry, K.A., Asiri, A.M. and Rahman, M.M. (2018) Functionalized Polyethersulfone as PES-NH2-Metal Oxide Nanofilers for the Detection of Y3+. Polymer Bulletin, 76, 4485-4506. https://doi.org/10.1007/s00289-018-2612-7
[19]
Chatti, S., Kricheldorf, H.R. and Schwarz, G. (2006) Copolycarbonates of Isosorbide and Various Diols. Journal of Polymer Science Part A: Polymer Chemistry, 44, 3616-3628. https://doi.org/10.1002/pola.21444
[20]
Besse, V., Auvergne, R., Carlotti, S., Boutevin, G., Otazaghine, B., Caillol, S., et al. (2013) Synthesis of Isosorbide Based Polyurethanes: An Isocyanate Free Method. Reactive and Functional Polymers, 73, 588-594. https://doi.org/10.1016/j.reactfunctpolym.2013.01.002
[21]
Nelson, A.M. and Long, T.E. (2012) A Perspective on Emerging Polymer Technologies for Bisphenol—A Replacement. Polymer International, 61, 1485-1491. https://doi.org/10.1002/pi.4323
[22]
Fenouillot, F., Rousseau, A., Colomines, G., Saint-Loup, R. and Pascault, J. (2010) Polymers from Renewable 1,4:3,6-Dianhydrohexitols (Isosorbide, Isomannide and Isoidide): A Review. Progress in Polymer Science, 35, 578-622. https://doi.org/10.1016/j.progpolymsci.2009.10.001
[23]
Feng, X., East, A.J., Hammond, W.B., Zhang, Y. and Jaffe, M. (2010) Overview of Advances in Sugar-Based Polymers. Polymers for Advanced Technologies, 22, 139-150. https://doi.org/10.1002/pat.1859
[24]
Hale, W.F., Farnham, A.G., Johnson, R.N. and Clendinning, R.A. (1967) Poly(Aryl Ethers) by Nucleophilic Aromatic Substitution. II. Thermal Stability. Journal of Polymer Science Part A-1: Polymer Chemistry, 5, 2399-2414. https://doi.org/10.1002/pol.1967.150050917
Kricheldorf, H.R. (1992) Handbook of Polymer Syntheses. Marsel Dekker.
[27]
Mechichi, R., Chabbah, T., Chatti, S., Jlalia, I., Sanglar, C., Casabianca, H., et al. (2022) Semi-Interpenetrating Network-Coated Silica Gel Based on Green Resources for the Efficient Adsorption of Aromatic Pollutants from Waters. Chemistry Africa, 5, 2241-2258. https://doi.org/10.1007/s42250-022-00463-9
[28]
Belgacem, C., Medimagh, R., Kricheldorf, H., Ben Romdhane, H. and Chatti, S. (2016) Copolyethersulfones of 1,4:3,6-Dianhydrohexitols and Bisphenol A. Designed Monomers and Polymers, 19, 248-255. https://doi.org/10.1080/15685551.2015.1136531
[29]
Hussain, M.M., Rahman, M.M., Arshad, M.N. and Asiri, A.M. (2017) Trivalent Y3+ Ionic Sensor Development Based on (e)-Methyl-N’-Nitrobenzylidene-Benzenesulfonohydrazide (MNBBSH) Derivatives Modified with Nafion Matrix. Scientific Reports, 7, Article No. 5832. https://doi.org/10.1038/s41598-017-05703-4
[30]
Kirsanov, D.O., Legin, A.V., Babain, V.A. and Vlasov, Y.G. (2005) Polymeric Sensors Based on Extraction Systems for Determination of Rare-Earth Metals. Russian Journal of Applied Chemistry, 78, 568-573. https://doi.org/10.1007/s11167-005-0343-7
[31]
Makombe, M., van der Horst, C., Silwana, B., Iwuoha, E. and Somerset, V. (2016) Antimony Film Sensor for Sensitive Rare Earth Metal Analysis in Environmental Samples. Journal of Environmental Science and Health, Part A, 51, 597-606. https://doi.org/10.1080/10934529.2016.1159857
[32]
Chen, J., Bai, H., Li, Z., Xia, J. and Cao, Q. (2018) Stripping Voltammetric Determination of Cerium in Food Using an Electropolymerized Poly-Catechol and Ion-Imprinted Membrane Modified Electrode. Journal of Electroanalytical Chemistry, 808, 41-49. https://doi.org/10.1016/j.jelechem.2017.11.049
[33]
Chen, J., Bai, H., Xia, J., Liu, X., Liu, Y. and Cao, Q. (2018) Trace Detection of Ce3+ by Adsorption Strip Voltammetry at a Carbon Paste Electrode Modified with Ion Imprinted Polymers. Journal of Rare Earths, 36, 1121-1126. https://doi.org/10.1016/j.jre.2018.03.014
[34]
Ravi, P.V., Thangadurai, D.T., Nehru, K., Lee, Y.I., Nataraj, D., Thomas, S., et al. (2020) Surface and Morphology Analyses, and Voltammetry Studies for Electrochemical Determination of Cerium(III) Using a Graphene Nanobud-Modified-Carbon Felt Electrode in Acidic Buffer Solution (pH 4.0 ± 0.05). RSC Advances, 10, 37409-37418. https://doi.org/10.1039/d0ra07555h