|
多级传动误差影响下齿轮结构优化设计方法
|
Abstract:
针对多级传动条件下齿轮运行性能难以满足要求的问题,设计了4种齿轮副腹板优化方案(直类、斜类A-30o、斜类B-20o、斜类C-10o),建立了多点接触啮合的有限元模型,开展了多级传动条件下的静态接触分析,根据齿面接触应力与齿根弯曲应力计算结果,实现了齿轮腹板几何结构的优化设计。在此基础上,设定了4种齿顶或齿根齿廓方向偏差修形量,完成了单双齿啮合运行时的时变啮合刚度特性分析。结果表明:相比于斜腹板齿轮结构,直腹板结构的静态接触性能更优;优化设计后的传动齿轮结构的齿面接触应力、齿根弯曲应力更低,多级传动条件下的时变啮合刚度显著减少,降低了磨损风险提升了附件传动齿轮的工作性能。
Aiming at the problem that the operational performance of single and double tooth meshing is not up to the requirement under the coupling excitation of multi-stage transmission errors, this paper designs four web optimization schemes (straight, helical A-30o, helical B-20o, helical C-10o) for the gear pair. The corresponding multi-point contact meshing finite element model is established, the static contact analysis is carried out and the distribution of relief and bending stresses is obtained, and the optimal choice of the optimization scheme is determined sequentially. The multi-stage transmission error is reflected in the tooth profile boundary offset, and four transmission error modification schemes are set to analyze the time-varying meshing characteristics of single- and double-tooth mesh operation. The results show that the static contact performance of the straight web structure is better; the multi-stage transmission error excitation effect can reduce the wear risk of single and double tooth mesh operation and improve the service performance. The optimized design of the transmission gear structure can better improve the working performance of the accessory transmission gear.
[1] | 张丽娟. 基于混合离散方法的多级齿轮传动系统振动优化[J]. 机械传动, 2017, 41(1): 155-159. |
[2] | 李继康. 高速列车齿轮传动系统动态特性分析及参数优化[D]: [硕士学位论文]. 大连: 大连交通大学, 2023. |
[3] | 王朝兵, 彭玲阳, 刘乐平, 等. 基于误差耦合补偿的3K型行星齿轮传动误差研究[J]. 汽车工程, 2018, 40(2): 200-205. |
[4] | 张开银, 吴庆迎, 曾超, 等. PC箱梁桥弯曲孔道接触应力分布研究[J/OL]. http://kns.cnki.net/kcms/detail/42.1824.U.20240409.1415.082.html, 2024-04-17. |
[5] | 朱笛, 梁森. 连续阻尼夹嵌结构复合材料的弯曲疲劳特性研究[J]. 化工新型材料, 2024, 52(7): 171-175+181. |
[6] | Yao, X., Sun, H., Zhao, Z. and Liu, Y. (2024) Event-Triggered Bipartite Consensus Tracking and Vibration Control of Flexible Timoshenko Manipulators under Time-Varying Actuator Faults. IEEE/CAA Journal of Automatica Sinica, 11, 1190-1201. https://doi.org/10.1109/jas.2024.124266 |
[7] | 杨加明, 王旭, 冯立华, 等. 基于ABAQUS的无人机机翼结构的强度及模态分析[J]. 南昌航空大学学报(自然科学版), 2012, 26(3): 1-5. |
[8] | 王朝兵, 陈小安, 李云松, 等. 行星齿轮传动误差的耦合补偿研究[J]. 农业机械学报, 2013, 44(8): 287-292. |
[9] | Xu, L., Sun, H., Song, Z. and Zang, S. (2021). Design of Coupling Compensation Method for Transmission Error of Small and Medium Modulus Precision Gears in CNC Machine Tools. 2021 International Conference on Intelligent Transportation, Big Data & Smart City, Xi’an, 27-28 March 2021, 274-277. https://doi.org/10.1109/icitbs53129.2021.00075 |
[10] | 粟时平. 多轴数控机床精度建模与误差补偿方法研究[D]: [博士学位论文]. 长沙: 中国人民解放军国防科学技术大学, 2002. |
[11] | 曹雪梅, 邓效忠, 聂少武. 基于共轭齿面修正的航空弧齿锥齿轮高阶传动误差齿面拓扑结构设计[J]. 航空动力学报, 2015, 30(1): 195-200. |
[12] | 杨建军, 龚飞, 张华, 等. 基于曲率修正的弧齿锥齿轮齿面设计[J]. 航空动力学报, 2018, 33(7): 1743-1749. |
[13] | 牟彦铭. 高重合度高速弧齿锥齿轮全局设计方法研究[D]: [博士学位论文]. 西安: 西北工业大学, 2019. |
[14] | 闫晓丽, 崔钺, 孟丽丽. 齿轮啮合周期内摩擦载荷变化有限元仿真分析[J]. 计算机仿真, 2024, 41(4): 512-516. |
[15] | 张浩, 苏建新, 邓效忠, 等. 修形斜齿轮成形磨削中齿廓精度补偿方法[J]. 机械传动, 2024, 48(2): 142-147. |