|
钠–葡萄糖共转运蛋白2抑制剂的心血管和肾脏获益
|
Abstract:
钠–葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter 2 inhibitors, SGLT2i)是一种新型的降糖药物,通过减少近曲小管对葡萄糖的重吸收,增加尿糖排泄来降低血糖。临床研究表明,SGLT2i能显著改善心血管和肾脏结局的临床获益,并具有良好的安全性。促使2型糖尿病的治疗从单一的控制血糖转向改善心血管和肾脏临床预后,从而降低2型糖尿病患者的全因死亡风险。本文从其临床获益证据、作用机制和药物安全性3个方面进行综述。
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel hypoglycemic agents that lower blood glucose by decreasing glucose reabsorption in proximal tubules and increasing urinary glucose excretion. Clinical studies have shown that SGLT2i can significantly improve the clinical benefit of cardiovascular and renal outcomes, and have a favorable safety profile. It has led to a shift in the treatment of type 2 diabetes from single glycemic control to improvement of cardiovascular and renal clinical prognosis, thereby reducing the risk of all-cause mortality in patients with type 2 diabetes mellitus. This article reviews the evidence of clinical benefit, mechanism of action and safety of SGLT2i.
[1] | Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., et al. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. BMJ, 369, m997. https://doi.org/10.1136/bmj.m997 |
[2] | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398. |
[3] | 葛均波, 霍勇, 高秀芳, 等. 改善心血管和肾脏结局的新型抗高血糖药物临床应用中国专家建议[J]. 中国循环杂志, 2020, 35(3): 231-238. |
[4] | Wheeler, D.C., Stefánsson, B.V., Jongs, N., Chertow, G.M., Greene, T., Hou, F.F., et al. (2021) Effects of Dapagliflozin on Major Adverse Kidney and Cardiovascular Events in Patients with Diabetic and Non-Diabetic Chronic Kidney Disease: A Prespecified Analysis from the DAPA-CKD Trial. The Lancet Diabetes & Endocrinology, 9, 22-31. https://doi.org/10.1016/s2213-8587(20)30369-7 |
[5] | McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Martinez, F.A., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008. https://doi.org/10.1056/nejmoa1911303 |
[6] | The EMPA-KIDNEY Collaborative Group (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127. https://doi.org/10.1056/nejmoa2204233 |
[7] | Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380, 2295-2306. https://doi.org/10.1056/nejmoa1811744 |
[8] | DeFronzo, R.A., Norton, L. and Abdul-Ghani, M. (2016) Renal, Metabolic and Cardiovascular Considerations of SGLT2 Inhibition. Nature Reviews Nephrology, 13, 11-26. https://doi.org/10.1038/nrneph.2016.170 |
[9] | Cingolani, H.E. and Ennis, I.L. (2007) Sodium-Hydrogen Exchanger, Cardiac Overload, and Myocardial Hypertrophy. Circulation, 115, 1090-1100. https://doi.org/10.1161/circulationaha.106.626929 |
[10] | Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., Fiolet, J.W.T., Stienen, G.J.M., Coronel, R., et al. (2016) Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573. https://doi.org/10.1007/s00125-016-4134-x |
[11] | Shin, S.J., Chung, S., Kim, S.J., Lee, E., Yoo, Y., Kim, J., et al. (2016) Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLOS ONE, 11, e0165703. https://doi.org/10.1371/journal.pone.0165703 |
[12] | Durante, W., Behnammanesh, G. and Peyton, K.J. (2021) Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. International Journal of Molecular Sciences, 22, Article 8786. https://doi.org/10.3390/ijms22168786 |
[13] | Koike, Y., Shirabe, S., Maeda, H., Yoshimoto, A., Arai, K., Kumakura, A., et al. (2019) Effect of Canagliflozin on the Overall Clinical State Including Insulin Resistance in Japanese Patients with Type 2 Diabetes Mellitus. Diabetes Research and Clinical Practice, 149, 140-146. https://doi.org/10.1016/j.diabres.2019.01.029 |
[14] | Yip, A.S.Y., Leong, S., Teo, Y.H., Teo, Y.N., Syn, N.L.X., See, R.M., et al. (2022) Effect of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors on Serum Urate Levels in Patients with and without Diabetes: A Systematic Review and Meta-Regression of 43 Randomized Controlled Trials. Therapeutic Advances in Chronic Disease, 13. https://doi.org/10.1177/20406223221083509 |
[15] | Lin, B., Koibuchi, N., Hasegawa, Y., Sueta, D., Toyama, K., Uekawa, K., et al. (2014) Glycemic Control with Empagliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorates Cardiovascular Injury and Cognitive Dysfunction in Obese and Type 2 Diabetic Mice. Cardiovascular Diabetology, 13, Article No. 148. https://doi.org/10.1186/s12933-014-0148-1 |
[16] | Korbut, A.I., Taskaeva, I.S., Bgatova, N.P., Muraleva, N.A., Orlov, N.B., Dashkin, M.V., et al. (2020) SGLT2 Inhibitor Empagliflozin and DPP4 Inhibitor Linagliptin Reactivate Glomerular Autophagy in db/db Mice, a Model of Type 2 Diabetes. International Journal of Molecular Sciences, 21, Article 2987. https://doi.org/10.3390/ijms21082987 |
[17] | Bonnet, F. and Scheen, A.J. (2018) Effects of SGLT2 Inhibitors on Systemic and Tissue Low-Grade Inflammation: The Potential Contribution to Diabetes Complications and Cardiovascular Disease. Diabetes & Metabolism, 44, 457-464. https://doi.org/10.1016/j.diabet.2018.09.005 |
[18] | McGovern, A.P., Hogg, M., Shields, B.M., Sattar, N.A., Holman, R.R., Pearson, E.R., et al. (2020) Risk Factors for Genital Infections in People Initiating SGLT2 Inhibitors and Their Impact on Discontinuation. BMJ Open Diabetes Research & Care, 8, e001238. https://doi.org/10.1136/bmjdrc-2020-001238 |
[19] | 纪立伟. 关注钠-葡萄糖转运蛋白2抑制剂引起的非高血糖性酮症酸中毒[J]. 药物不良反应杂志, 2021, 23(6): 281-284. |