全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宫颈癌与细胞核转录因子NF-E2相关因子2
Cervical Cancer and the Nuclear Transcription Factor NF-E2-Related Factor 2

DOI: 10.12677/acm.2024.14102627, PP. 112-119

Keywords: 核转录因子E2相关因子2,Keap/Nrf2/ARE信号通路,Nrf2双向作用,宫颈鳞状细胞癌
Nuclear Transcription Factor NF-E2-Related Factor 2
, Keap/Nrf2/ARE Pathway, The Bidirectional Effect of Nrf2, Cervical Squamous Cell Carcinoma

Full-Text   Cite this paper   Add to My Lib

Abstract:

宫颈癌的发展主要归因于高危人类乳头状瘤病毒(HR-HPVs)的感染。近年来发现HPV阳性宫颈癌的恶性生物学行为考虑可能为氧化应激环境的作用促进了病毒对宫颈鳞状上皮组织慢性感染所致的持续病变。抗氧化应激核心途径中的核转录因子E2相关因子2 (Nrf2)和Kelch样ech相关蛋白1 (Keap1)成分对于稳定内环境至关重要。肿瘤的发展与Nrf2的过度激活有很大关联,而这一激活则引导了一系列涉及赋予肿瘤恶化特性自我增殖、迁移、调控基因的表达。Nrf2因具有多面性功能,研究者正尝试通过抑制Keap1-Nrf2-抗氧化反应元件(ARE)路径,来发展针对性癌症治疗方法。进行临床研究对相关靶点设计进一步的治疗方案,对宫颈癌治疗预后进展至关重要。
Cervical carcinoma advancement is primarily linked to the presence of oncogenic human papillomavirus (HPV) types. Recent investigations suggest the neoplastic activities associated with HPV-positive cervical neoplasms could stem from oxidative stress, which drives prolonged pathological transformation in the cervix’s epithelium as a consequence of continuous viral onslaught. The Nrf2/Keap1 signaling pathway is a key molecule regulating oxidative stress. The Nrf2 protein is activated in tumors, and activated Nrf2 participates in malignant biological behaviors such as tumor cell replication, implantation, and invasion after being activated by multiple target genes. Modulating the interaction among Keap1, Nrf2, and the antioxidant response element (ARE) is increasingly recognized as an elaborate approach in cancer therapy, given Nrf2’s complex regulatory effects. Advancing clinical investigations to devise sophisticated therapeutic strategies targeting specific molecules is imperative for enhancing the treatment outcomes of cervical carcinoma.

References

[1]  Kaplum, V., Ramos, A.C., Consolaro, M.E.L., Fernandez, M.A., Ueda-Nakamura, T., Dias-Filho, B.P., et al. (2018) Proanthocyanidin Polymer-Rich Fraction of Stryphnodendron adstringens Promotes in Vitro and in Vivo Cancer Cell Death via Oxidative Stress. Frontiers in Pharmacology, 9, Article 694.
https://doi.org/10.3389/fphar.2018.00694
[2]  Morimitsu, Y., Nakagawa, Y., Hayashi, K., Fujii, H., Kumagai, T., Nakamura, Y., et al. (2002) A Sulforaphane Analogue That Potently Activates the Nrf2-Dependent Detoxification Pathway. Journal of Biological Chemistry, 277, 3456-3463.
https://doi.org/10.1074/jbc.m110244200
[3]  Kitamura, H. and Motohashi, H. (2018) NRF2 Addiction in Cancer Cells. Cancer Science, 109, 900-911.
https://doi.org/10.1111/cas.13537
[4]  Pandey, P., Singh, A.K., Singh, M., Tewari, M., Shukla, H.S. and Gambhir, I.S. (2017) The See-Saw of Keap1-Nrf2 Pathway in Cancer. Critical Reviews in Oncology/Hematology, 116, 89-98.
https://doi.org/10.1016/j.critrevonc.2017.02.006
[5]  Tonelli, C., Chio, I.I.C. and Tuveson, D.A. (2018) Transcriptional Regulation by Nrf2. Antioxidants & Redox Signaling, 29, 1727-1745.
https://doi.org/10.1089/ars.2017.7342
[6]  Lu, M., Ji, J., Jiang, Z. and You, Q. (2016) The Keap1-Nrf2-ARE Pathway as a Potential Preventive and Therapeutic Target: An Update. Medicinal Research Reviews, 36, 924-963.
https://doi.org/10.1002/med.21396
[7]  吴晓彤, 王玲,韩 丽英. Nrf2在宫颈癌发生发展中的作用研究进展[J]. 中国妇幼保健, 2017, 32(12): 2805-2808.
[8]  Delgado-Buenrostro, N.L., Medina-Reyes, E.I., Lastres-Becker, I., Freyre-Fonseca, V., Ji, Z., Hernández-Pando, R., et al. (2014) Nrf2 Protects the Lung against Inflammation Induced by Titanium Dioxide Nanoparticles: A Positive Regulator Role of Nrf2 on Cytokine Release. Environmental Toxicology, 30, 782-792.
https://doi.org/10.1002/tox.21957
[9]  Menegon, S., Columbano, A. and Giordano, S. (2016) The Dual Roles of NRF2 in Cancer. Trends in Molecular Medicine, 22, 578-593.
https://doi.org/10.1016/j.molmed.2016.05.002
[10]  Ma, X., Luo, Q., Zhu, H., Liu, X., Dong, Z., Zhang, K., et al. (2018) Aldehyde Dehydrogenase 2 Activation Ameliorates CCl4-Induced Chronic Liver Fibrosis in Mice by Up-Regulating Nrf2/Ho-1 Antioxidant Pathway. Journal of Cellular and Molecular Medicine, 22, 3965-3978.
https://doi.org/10.1111/jcmm.13677
[11]  Taguchi, K., Takaku, M., Egner, P.A., Morita, M., Kaneko, T., Mashimo, T., et al. (2016) Generation of a New Model Rat: Nrf2 Knockout Rats Are Sensitive to Aflatoxin B1 Toxicity. Toxicological Sciences, 152, 40-52.
https://doi.org/10.1093/toxsci/kfw065
[12]  Suzuki, T., Shibata, T., Takaya, K., Shiraishi, K., Kohno, T., Kunitoh, H., et al. (2013) Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels. Molecular and Cellular Biology, 33, 2402-2412.
https://doi.org/10.1128/mcb.00065-13
[13]  Cho, H., Jedlicka, A.E., Reddy, S.P.M., Kensler, T.W., Yamamoto, M., Zhang, L., et al. (2002) Role of NRF2 in Protection against Hyperoxic Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 26, 175-182.
https://doi.org/10.1165/ajrcmb.26.2.4501
[14]  Xu, T., Yang, Y., Chen, Z., Wang, J., Wang, X., Zheng, Y., et al. (2023) TNFAIP2 Confers Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma via KEAP1/NRF2 Signaling. Journal of Experimental & Clinical Cancer Research, 42, Article No. 190.
https://doi.org/10.1186/s13046-023-02775-1
[15]  Feng, L., Zhao, K., Sun, L., Yin, X., Zhang, J., Liu, C., et al. (2021) SLC7A11 Regulated by NRF2 Modulates Esophageal Squamous Cell Carcinoma Radiosensitivity by Inhibiting Ferroptosis. Journal of Translational Medicine, 19, Article No. 367.
https://doi.org/10.1186/s12967-021-03042-7
[16]  Mukhopadhyay, S., Goswami, D., Adiseshaiah, P.P., Burgan, W., Yi, M., Guerin, T.M., et al. (2020) Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers. Cancer Research, 80, 1630-1643.
https://doi.org/10.1158/0008-5472.can-19-1363
[17]  Hirose, W., Oshikiri, H., Taguchi, K. and Yamamoto, M. (2022) The KEAP1-NRF2 System and Esophageal Cancer. Cancers, 14, Article 4702.
https://doi.org/10.3390/cancers14194702
[18]  Liu, H., Xu, X., Wu, R., Bi, L., Zhang, C., Chen, H., et al. (2021) Antioral Squamous Cell Carcinoma Effects of Carvacrol via Inhibiting Inflammation, Proliferation, and Migration Related to Nrf2/Keap1 Pathway. BioMed Research International, 2021, Article ID: 6616547.
https://doi.org/10.1155/2021/6616547
[19]  Syu, J., Chi, J. and Kung, H. (2016) Nrf2 Is the Key to Chemotherapy Resistance in MCF7 Breast Cancer Cells under Hypoxia. Oncotarget, 7, 14659-14672.
https://doi.org/10.18632/oncotarget.7406
[20]  Saed, G.M., Diamond, M.P. and Fletcher, N.M. (2017) Updates of the Role of Oxidative Stress in the Pathogenesis of Ovarian Cancer. Gynecologic Oncology, 145, 595-602.
https://doi.org/10.1016/j.ygyno.2017.02.033
[21]  Bellezza, I., Giambanco, I., Minelli, A. and Donato, R. (2018) Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1865, 721-733.
https://doi.org/10.1016/j.bbamcr.2018.02.010
[22]  Rojo de la Vega, M., Chapman, E. and Zhang, D.D. (2018) NRF2 and the Hallmarks of Cancer. Cancer Cell, 34, 21-43.
https://doi.org/10.1016/j.ccell.2018.03.022
[23]  Sajadimajd, S. and Khazaei, M. (2018) Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18, 538-557.
https://doi.org/10.2174/1568009617666171002144228
[24]  Gong, J. and Xu, H. (2021) Current Perspectives on the Role of Nrf2 in 5-Fluorouracil Resistance in Colorectal Cancer. Anti-Cancer Agents in Medicinal Chemistry, 21, 2297-2303.
https://doi.org/10.2174/1871520621666210129094354
[25]  Mokhtari, R.B., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., et al. (2017) Combination Therapy in Combating Cancer. Oncotarget, 8, 38022-38043.
https://doi.org/10.18632/oncotarget.16723
[26]  李昭, 郭叶青, 林颖. PERK、Nrf2、HO-1蛋白在早期宫颈癌组织中的表达及其意义[J]. 医学临床研究, 2019, 36(2): 322-323.
[27]  Kontostathi, G., Zoidakis, J., Makridakis, M., Lygirou, V., Mermelekas, G., Papadopoulos, T., et al. (2017) Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein Ig-H3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis. BioMed Research International, 2017, Article ID: 4180703.
https://doi.org/10.1155/2017/4180703
[28]  Ma, J., Tuersun, H., Jiao, S., Zheng, J., Xiao, J. and Hasim, A. (2015) Functional Role of NRF2 in Cervical Carcinogenesis. PLOS ONE, 10, e0133876.
https://doi.org/10.1371/journal.pone.0133876
[29]  Tossetta, G. and Marzioni, D. (2023) Targeting the NRF2/KEAP1 Pathway in Cervical and Endometrial Cancers. European Journal of Pharmacology, 941, Article ID: 175503.
https://doi.org/10.1016/j.ejphar.2023.175503
[30]  Kensler, T.W., Egner, P.A., Dolan, P.M., et al. (1987) Mechanism of Protection against Aflatoxin Tumorigenicity in Rats Fed 5-(2-Pyrazinyl)-4-Methyl-1, 2-Dithiol-3-Thione (Oltipraz) and Related 1, 2-Dithiol-3-Thiones and 1, 2-Dithiol-3-Ones. Cancer Research, 47, 4271-4277.
[31]  Garg, R., Gupta, S. and Maru, G.B. (2008) Dietary Curcumin Modulates Transcriptional Regulators of Phase I and Phase II Enzymes in Benzo[ a ]pyrene-Treated Mice: Mechanism of Its Anti-Initiating Action. Carcinogenesis, 29, 1022-1032.
https://doi.org/10.1093/carcin/bgn064
[32]  Aguilar-Garrido, P., Otero-Sobrino, Á., Navarro-Aguadero, M.Á., Velasco-Estévez, M. and Gallardo, M. (2022) The Role of RNA-Binding Proteins in Hematological Malignancies. International Journal of Molecular Sciences, 23, Article 9552.
https://doi.org/10.3390/ijms23179552
[33]  Wang, M., Xue, Y., Shen, L., Qin, P., Sang, X., Tao, Z., et al. (2019) Inhibition of SGK1 Confers Vulnerability to Redox Dysregulation in Cervical Cancer. Redox Biology, 24, Article ID: 101225.
https://doi.org/10.1016/j.redox.2019.101225
[34]  Cho, U., Kim, H., Park, H.S., Kwon, O., Lee, A. and Jeong, S. (2016) Nuclear Expression of GS28 Protein: A Novel Biomarker That Predicts Worse Prognosis in Cervical Cancers. PLOS ONE, 11, e0162623.
https://doi.org/10.1371/journal.pone.0162623
[35]  Rim, D.E., Yoo, H.J., Lee, J., Kwon, O. and Jeong, S. (2019) Role of GS28 in Sodium Nitroprusside-Induced Cell Death in Cervical Carcinoma Cells. Journal of Biochemical and Molecular Toxicology, 33, e22348.
https://doi.org/10.1002/jbt.22348
[36]  Keyvani, V., Riahi, E., Yousefi, M., Esmaeili, S., Shafabakhsh, R., Moradi Hasan-Abad, A., et al. (2022) Gynecologic Cancer, Cancer Stem Cells, and Possible Targeted Therapies. Frontiers in Pharmacology, 13, Article 823572.
https://doi.org/10.3389/fphar.2022.823572
[37]  Jia, Y., Chen, J., Zhu, H., Jia, Z. and Cui, M. (2015) Aberrantly Elevated Redox Sensing Factor Nrf2 Promotes Cancer Stem Cell Survival via Enhanced Transcriptional Regulation of ABCG2 and Bcl-2/Bmi-1 Genes. Oncology Reports, 34, 2296-2304.
https://doi.org/10.3892/or.2015.4214

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133