全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Insight into Function and Subcellular Localization of a Type III-Secreted Effector in Pseudomonas syringae pv. tomato DC3000

DOI: 10.4236/ajps.2024.1510053, PP. 835-846

Keywords: Cell Death, HopAA1-1, Nicotiana benthamiana, Pst DC3000

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.

References

[1]  Marín-Ponce, L.F., Rodríguez-Puerto, C., Rocha-Loyola, P. and Rojas, C.M. (2023) The Pseudomonas syringae pv. Tomato DC3000 Effector HopD1 Interferes with Cellular Dynamics Associated with the Function of the Plant Immune Protein AtNHR2B. Frontiers in Microbiology, 14, Article 1305899.
https://doi.org/10.3389/fmicb.2023.1305899
[2]  Rodríguez-Puerto, C., Chakraborty, R., Singh, R., Rocha-Loyola, P. and Rojas, C.M. (2022) The Pseudomonas syringae Type III Effector HopG1 Triggers Necrotic Cell Death That Is Attenuated by AtNHR2B. Scientific Reports, 12, Article No. 5388.
https://doi.org/10.1038/s41598-022-09335-1
[3]  Velásquez, A.C., Oney, M., Huot, B., Xu, S. and He, S.Y. (2017) Diverse Mechanisms of Resistance to Pseudomonas syringae in a Thousand Natural Accessions of Arabidopsis thaliana. New Phytologist, 214, 1673-1687.
https://doi.org/10.1111/nph.14517
[4]  Wang, W., Feng, B., Zhou, J. and Tang, D. (2020) Plant Immune Signaling: Advancing on Two Frontiers. Journal of Integrative Plant Biology, 62, 2-24.
https://doi.org/10.1111/jipb.12898
[5]  Jones, J.D.G. and Dangl, J.L. (2006) The Plant Immune System. Nature, 444, 323-329.
https://doi.org/10.1038/nature05286
[6]  Coll, N.S., Epple, P. and Dangl, J.L. (2011) Programmed Cell Death in the Plant Immune System. Cell Death & Differentiation, 18, 1247-1256.
https://doi.org/10.1038/cdd.2011.37
[7]  Dillon, M.M., Almeida, R.N.D., Laflamme, B., Martel, A., Weir, B.S., Desveaux, D., et al. (2019) Molecular Evolution of Pseudomonas syringae Type III Secreted Effector Proteins. Frontiers in Plant Science, 10, Article 418.
https://doi.org/10.3389/fpls.2019.00418
[8]  Kvitko, B.H., Park, D.H., Velásquez, A.C., Wei, C., Russell, A.B., Martin, G.B., et al. (2009) Deletions in the Repertoire of Pseudomonas syringae pv. Tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors. PLOS Pathogens, 5, e1000388.
https://doi.org/10.1371/journal.ppat.1000388
[9]  Cunnac, S., Chakravarthy, S., Kvitko, B.H., Russell, A.B., Martin, G.B. and Collmer, A. (2011) Genetic Disassembly and Combinatorial Reassembly Identify a Minimal Functional Repertoire of Type III Effectors in Pseudomonas syringae. Proceedings of the National Academy of Sciences, 108, 2975-2980.
https://doi.org/10.1073/pnas.1013031108
[10]  Munkvold, K.R., Martin, M.E., Bronstein, P.A. and Collmer, A. (2008) A Survey of the Pseudomonas syringae pv. tomato DC3000 Type III Secretion System Effector Repertoire Reveals Several Effectors That Are Deleterious When Expressed in Saccharomyces cerevisiae. Molecular Plant-Microbe Interactions®, 21, 490-502.
https://doi.org/10.1094/mpmi-21-4-0490
[11]  Huang, J., Jia, P., Zhong, X., Guan, X., Zhang, H. and Gao, Z. (2024) Ectopic Expression of the Arabidopsis Mutant L3 NB-LRR Receptor Gene in Nicotiana benthamiana Cells Leads to Cell Death. Gene, 906, Article 148256.
https://doi.org/10.1016/j.gene.2024.148256
[12]  Huang, J., Guan, X., Zhong, X., Jia, P., Zhang, H., Chen, K., et al. (2024) Dissecting Multiple Arabidopsis CC-NBS-LRR Proteins Structure and Localization. Journal of Biosciences and Medicines, 12, 87-99.
https://doi.org/10.4236/jbm.2024.127008
[13]  Xu, F. and Copeland, C. (2012) Nuclear Extraction from Arabidopsis thaliana. BIO-PROTOCOL, 2, e306.
https://doi.org/10.21769/bioprotoc.306
[14]  Huang, J., Zhong, X., Guan, X., Jia, P., Zhang, H., Chen, K., et al. (2024) Screening and Identifying of Interaction Protein AtL5 in Arabidopsis thaliana. Journal of Biosciences and Medicines, 12, 184-193.
https://doi.org/10.4236/jbm.2024.127017
[15]  Chen, X., Zhao, Y., Laborda, P., Yang, Y. and Liu, F. (2023) Molecular Cloning and Characterization of a Serotonin N-Acetyltransferase Gene, xoSNAT3, from Xanthomonas oryzae pv. Oryzae. International Journal of Environmental Research and Public Health, 20, Article 1865.
https://doi.org/10.3390/ijerph20031865
[16]  Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q., et al. (2012) Structure-function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance. PLOS Pathogens, 8, e1002752.
https://doi.org/10.1371/journal.ppat.1002752
[17]  Gravino, M., Locci, F., Tundo, S., Cervone, F., Savatin, D.V. and De Lorenzo, G. (2016) Immune Responses Induced by Oligogalacturonides Are Differentially Affected by AvrPto and Loss of BAK1/BKK1 and PEPR1/PEPR2. Molecular Plant Pathology, 18, 582-595.
https://doi.org/10.1111/mpp.12419
[18]  Shan, L., He, P., Li, J., Heese, A., Peck, S.C., Nürnberger, T., et al. (2008) Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity. Cell Host & Microbe, 4, 17-27.
https://doi.org/10.1016/j.chom.2008.05.017
[19]  Nomura, K., DebRoy, S., Lee, Y.H., Pumplin, N., Jones, J. and He, S.Y. (2006) A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease. Science, 313, 220-223.
https://doi.org/10.1126/science.1129523
[20]  Xiao, F., He, P., Abramovitch, R.B., Dawson, J.E., Nicholson, L.K., Sheen, J., et al. (2007) The N‐Terminal Region of Pseudomonas Type III Effector AvrPtoB Elicits Pto‐dependent Immunity and Has Two Distinct Virulence Determinants. The Plant Journal, 52, 595-614.
https://doi.org/10.1111/j.1365-313x.2007.03259.x
[21]  Li, X., Lin, H., Zhang, W., Zou, Y., Zhang, J., Tang, X., et al. (2005) Flagellin Induces Innate Immunity in Nonhost Interactions That Is Suppressed by Pseudomonas syringae Effectors. Proceedings of the National Academy of Sciences, 102, 12990-12995.
https://doi.org/10.1073/pnas.0502425102
[22]  Qi, D., DeYoung, B.J. and Innes, R.W. (2012) Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein. Plant Physiology, 158, 1819-1832.
https://doi.org/10.1104/pp.112.194035
[23]  Gao, Z., Chung, E., Eitas, T.K. and Dangl, J.L. (2011) Plant Intracellular Innate Immune Receptor Resistance to Pseudomonas syringae pv. Maculicola 1 (RPM1) Is Activated At, and Functions on, the Plasma Membrane. Proceedings of the National Academy of Sciences, 108, 7619-7624.
https://doi.org/10.1073/pnas.1104410108
[24]  Takemoto, D., Rafiqi, M., Hurley, U., Lawrence, G.J., Bernoux, M., Hardham, A.R., et al. (2012) N-Terminal Motifs in Some Plant Disease Resistance Proteins Function in Membrane Attachment and Contribute to Disease Resistance. Molecular Plant-Microbe Interactions®, 25, 379-392.
https://doi.org/10.1094/mpmi-11-10-0272
[25]  Césari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., et al. (2014) The NB‐LRR Proteins RGA4 and RGA5 Interact Functionally and Physically to Confer Disease Resistance. The EMBO Journal, 33, 1941-1959.
https://doi.org/10.15252/embj.201487923
[26]  Xu, F., Cheng, Y.T., Kapos, P., Huang, Y. and Li, X. (2014) P-Loop-Dependent NLR SNC1 Can Oligomerize and Activate Immunity in the Nucleus. Molecular Plant, 7, 1801-1804.
https://doi.org/10.1093/mp/ssu097
[27]  Slootweg, E., Roosien, J., Spiridon, L.N., Petrescu, A., Tameling, W., Joosten, M., et al. (2010) Nucleocytoplasmic Distribution Is Required for Activation of Resistance by the Potato NB-LRR Receptor Rx1 and Is Balanced by Its Functional Domains. The Plant Cell, 22, 4195-4215.
https://doi.org/10.1105/tpc.110.077537
[28]  Wang, S., Wang, X., Zhang, R., Liu, Q., Sun, X., Wang, J., et al. (2022) RppM, Encoding a Typical CC-NBS-LRR Protein, Confers Resistance to Southern Corn Rust in Maize. Frontiers in Plant Science, 13, Article 951318.
https://doi.org/10.3389/fpls.2022.951318

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133