Pseudomonassyringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotianabenthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonassyringae pv. tomato.
References
[1]
Marín-Ponce, L.F., Rodríguez-Puerto, C., Rocha-Loyola, P. and Rojas, C.M. (2023) The Pseudomonassyringae pv. Tomato DC3000 Effector HopD1 Interferes with Cellular Dynamics Associated with the Function of the Plant Immune Protein AtNHR2B. Frontiers inMicrobiology, 14, Article 1305899. https://doi.org/10.3389/fmicb.2023.1305899
[2]
Rodríguez-Puerto, C., Chakraborty, R., Singh, R., Rocha-Loyola, P. and Rojas, C.M. (2022) The Pseudomonassyringae Type III Effector HopG1 Triggers Necrotic Cell Death That Is Attenuated by AtNHR2B. ScientificReports, 12, Article No. 5388. https://doi.org/10.1038/s41598-022-09335-1
[3]
Velásquez, A.C., Oney, M., Huot, B., Xu, S. and He, S.Y. (2017) Diverse Mechanisms of Resistance to Pseudomonas syringae in a Thousand Natural Accessions of Arabidopsis thaliana. NewPhytologist, 214, 1673-1687. https://doi.org/10.1111/nph.14517
[4]
Wang, W., Feng, B., Zhou, J. and Tang, D. (2020) Plant Immune Signaling: Advancing on Two Frontiers. JournalofIntegrativePlantBiology, 62, 2-24. https://doi.org/10.1111/jipb.12898
[5]
Jones, J.D.G. and Dangl, J.L. (2006) The Plant Immune System. Nature, 444, 323-329. https://doi.org/10.1038/nature05286
[6]
Coll, N.S., Epple, P. and Dangl, J.L. (2011) Programmed Cell Death in the Plant Immune System. CellDeath&Differentiation, 18, 1247-1256. https://doi.org/10.1038/cdd.2011.37
[7]
Dillon, M.M., Almeida, R.N.D., Laflamme, B., Martel, A., Weir, B.S., Desveaux, D., etal. (2019) Molecular Evolution of Pseudomonassyringae Type III Secreted Effector Proteins. FrontiersinPlantScience, 10, Article 418. https://doi.org/10.3389/fpls.2019.00418
[8]
Kvitko, B.H., Park, D.H., Velásquez, A.C., Wei, C., Russell, A.B., Martin, G.B., etal. (2009) Deletions in the Repertoire of Pseudomonassyringae pv. Tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors. PLOS Pathogens, 5, e1000388. https://doi.org/10.1371/journal.ppat.1000388
[9]
Cunnac, S., Chakravarthy, S., Kvitko, B.H., Russell, A.B., Martin, G.B. and Collmer, A. (2011) Genetic Disassembly and Combinatorial Reassembly Identify a Minimal Functional Repertoire of Type III Effectors in Pseudomonas syringae. ProceedingsoftheNationalAcademyofSciences, 108, 2975-2980. https://doi.org/10.1073/pnas.1013031108
[10]
Munkvold, K.R., Martin, M.E., Bronstein, P.A. and Collmer, A. (2008) A Survey of the Pseudomonas syringae pv. tomato DC3000 Type III Secretion System Effector Repertoire Reveals Several Effectors That Are Deleterious When Expressed in Saccharomyces cerevisiae. MolecularPlant-MicrobeInteractions®, 21, 490-502. https://doi.org/10.1094/mpmi-21-4-0490
[11]
Huang, J., Jia, P., Zhong, X., Guan, X., Zhang, H. and Gao, Z. (2024) Ectopic Expression of the Arabidopsis Mutant L3 NB-LRR Receptor Gene in Nicotianabenthamiana Cells Leads to Cell Death. Gene, 906, Article 148256. https://doi.org/10.1016/j.gene.2024.148256
Xu, F. and Copeland, C. (2012) Nuclear Extraction from Arabidopsis thaliana. BIO-PROTOCOL, 2, e306. https://doi.org/10.21769/bioprotoc.306
[14]
Huang, J., Zhong, X., Guan, X., Jia, P., Zhang, H., Chen, K., etal. (2024) Screening and Identifying of Interaction Protein AtL5 in Arabidopsisthaliana. JournalofBiosciencesandMedicines, 12, 184-193. https://doi.org/10.4236/jbm.2024.127017
[15]
Chen, X., Zhao, Y., Laborda, P., Yang, Y. and Liu, F. (2023) Molecular Cloning and Characterization of a Serotonin N-Acetyltransferase Gene, xoSNAT3, from Xanthomonas oryzae pv. Oryzae. InternationalJournalofEnvironmentalResearchandPublicHealth, 20, Article 1865. https://doi.org/10.3390/ijerph20031865
[16]
Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q., etal. (2012) Structure-function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance. PLOS Pathogens, 8, e1002752. https://doi.org/10.1371/journal.ppat.1002752
[17]
Gravino, M., Locci, F., Tundo, S., Cervone, F., Savatin, D.V. and De Lorenzo, G. (2016) Immune Responses Induced by Oligogalacturonides Are Differentially Affected by AvrPto and Loss of BAK1/BKK1 and PEPR1/PEPR2. MolecularPlantPathology, 18, 582-595. https://doi.org/10.1111/mpp.12419
[18]
Shan, L., He, P., Li, J., Heese, A., Peck, S.C., Nürnberger, T., etal. (2008) Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity. CellHost&Microbe, 4, 17-27. https://doi.org/10.1016/j.chom.2008.05.017
[19]
Nomura, K., DebRoy, S., Lee, Y.H., Pumplin, N., Jones, J. and He, S.Y. (2006) A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease. Science, 313, 220-223. https://doi.org/10.1126/science.1129523
[20]
Xiao, F., He, P., Abramovitch, R.B., Dawson, J.E., Nicholson, L.K., Sheen, J., etal. (2007) The N‐Terminal Region of Pseudomonas Type III Effector AvrPtoB Elicits Pto‐dependent Immunity and Has Two Distinct Virulence Determinants. ThePlantJournal, 52, 595-614. https://doi.org/10.1111/j.1365-313x.2007.03259.x
[21]
Li, X., Lin, H., Zhang, W., Zou, Y., Zhang, J., Tang, X., etal. (2005) Flagellin Induces Innate Immunity in Nonhost Interactions That Is Suppressed by Pseudomonas syringae Effectors. ProceedingsoftheNationalAcademyofSciences, 102, 12990-12995. https://doi.org/10.1073/pnas.0502425102
[22]
Qi, D., DeYoung, B.J. and Innes, R.W. (2012) Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein. PlantPhysiology, 158, 1819-1832. https://doi.org/10.1104/pp.112.194035
[23]
Gao, Z., Chung, E., Eitas, T.K. and Dangl, J.L. (2011) Plant Intracellular Innate Immune Receptor Resistance to Pseudomonas syringaepv.Maculicola1 (RPM1) Is Activated At, and Functions on, the Plasma Membrane. ProceedingsoftheNationalAcademyofSciences, 108, 7619-7624. https://doi.org/10.1073/pnas.1104410108
[24]
Takemoto, D., Rafiqi, M., Hurley, U., Lawrence, G.J., Bernoux, M., Hardham, A.R., etal. (2012) N-Terminal Motifs in Some Plant Disease Resistance Proteins Function in Membrane Attachment and Contribute to Disease Resistance. MolecularPlant-MicrobeInteractions®, 25, 379-392. https://doi.org/10.1094/mpmi-11-10-0272
[25]
Césari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., etal. (2014) The NB‐LRR Proteins RGA4 and RGA5 Interact Functionally and Physically to Confer Disease Resistance. TheEMBOJournal, 33, 1941-1959. https://doi.org/10.15252/embj.201487923
[26]
Xu, F., Cheng, Y.T., Kapos, P., Huang, Y. and Li, X. (2014) P-Loop-Dependent NLR SNC1 Can Oligomerize and Activate Immunity in the Nucleus. MolecularPlant, 7, 1801-1804. https://doi.org/10.1093/mp/ssu097
[27]
Slootweg, E., Roosien, J., Spiridon, L.N., Petrescu, A., Tameling, W., Joosten, M., etal. (2010) Nucleocytoplasmic Distribution Is Required for Activation of Resistance by the Potato NB-LRR Receptor Rx1 and Is Balanced by Its Functional Domains. ThePlantCell, 22, 4195-4215. https://doi.org/10.1105/tpc.110.077537
[28]
Wang, S., Wang, X., Zhang, R., Liu, Q., Sun, X., Wang, J., etal. (2022) RppM, Encoding a Typical CC-NBS-LRR Protein, Confers Resistance to Southern Corn Rust in Maize. FrontiersinPlantScience, 13, Article 951318. https://doi.org/10.3389/fpls.2022.951318