全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

着舰路径对舰载直升机起降安全影响研究
Research on the Impact of Landing Path on the Safety of Takeoff and Landing for Shipborne Helicopter

DOI: 10.12677/ijfd.2024.123005, PP. 45-54

Keywords: 计算流体力学,飞行动力学,舰载直升机,风限图,着舰路径
Computational Fluid Dynamics
, Flight Dynamics, Shipborne Helicopter, Candidate Flight Envelope, Landing Path

Full-Text   Cite this paper   Add to My Lib

Abstract:

机舰耦合流场中存在着涡–涡干扰,是一个复杂紊乱的非定常流场,舰载直升机在不同着舰路径上必然会受到不同程度的影响,进而限制舰载直升机的起降能力。现基于简化护卫舰和UH-60直升机的耦合模型,结合计算流体力学和直升机飞行动力学,对不同着舰路径(正后方进场、斜向进场、横向进场)下的直升机起降风限图特征进行分析研究。结果显示,三种进场方式中,正后方进场风限图包络最大、横向进场风限图包络最小;斜向进场方式下,当进场方向、机头朝向和甲板风方向一致时,风速边界最大。建议直升机优先选择正后方进场,若采用斜向进场时,直升机进场方向、机头朝向尽量和甲板风方向保持一致。
There is vortex interference in the coupled flow field between helicopter and ship, which is a complex and turbulent unsteady flow field. Shipborne helicopter will inevitably be affected on different landing paths, thereby limiting their takeoff and landing capabilities. Based on a simplified coupling model of frigate and UH-60 helicopter, combined with computational fluid dynamics and helicopter flight dynamics, the characteristics of helicopter’s candidate flight envelope under different landing paths (stern approach, oblique approach, lateral approach) are analyzed and studied. The results showed that among the three approach methods, the candidate flight envelope for stern approach was the largest, and that for lateral approach was the smallest. For the oblique approach, the maximum wind speed boundary occurs when the directions of approach, heading and wind-over-deck are consistent. It is recommended that helicopters prioritize stern approach. If using oblique approach, the direction of approach and heading should be as consistent as possible with the direction of wind-over-deck.

References

[1]  Bogstad, M.C., Habashi, W.G., Akel, I., Ait-Ali-Yahia, D., Giannias, N. and Longo, V. (2002) Computational-Fluid-Dynamics Based Advanced Ship-Airwake Database for Helicopter Flight Simulators. Journal of Aircraft, 39, 830-838.
https://doi.org/10.2514/2.3003
[2]  Roper, D.M., Owen, I., Padfield, G.D. and Hodge, S.J. (2006) Integrating CFD and Piloted Simulation to Quantify Ship-Helicopter Operating Limits. The Aeronautical Journal, 110, 419-428.
https://doi.org/10.1017/s0001924000001329
[3]  Lee, D., Horn, J., Sezer-Uzol, N. and Long, L. (2003) Simulation of Pilot Control Activity during Helicopter Shipboard Operations. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, 11-14 August 2003, 1-11.
https://doi.org/10.2514/6.2003-5306
[4]  唐宏清, 肖升兴. 某型无人直升机舰面悬停风限图计算[J]. 科技创新与应用, 2020(36): 19-21.
[5]  谭文渊, 曹义华. 基于嵌套网格的舰载直升机流场仿真及风限图计算[J]. 航空动力学报, 2020, 35(10): 2166-2175.
[6]  贺少华, 谭大力, 颜世伟. 舰载直升机理论风限图飞行模拟获取方法[J]. 海军航空工程学院学报, 2020, 35(3): 271-276, 284.
[7]  左清宇, 徐国华, 史勇杰. 基于CFD方法的舰载直升机着舰风限图计算[J]. 南京航空航天大学学报, 2024, 56(2): 227-233.
[8]  胡楚君, 安强林, 王晓成. 舰载直升机着舰风限图计算[J]. 科技导报, 2019, 37(13): 70-75.
[9]  吉洪蕾. 直升机舰面起降风限图与驾驶员操纵负荷研究[D]: [博士学位论文]. 南京: 南京航空航天大学, 2017: 85-87.
[10]  Forrest, J.S. and Owen, I. (2010) An Investigation of Ship Airwakes Using Detached-Eddy Simulation. Computers & Fluids, 39, 656-673.
https://doi.org/10.1016/j.compfluid.2009.11.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133