|
软包电池高温自燃实验系统的设计搭建及实验分析
|
Abstract:
为了能够真实反映高温环境下软包电池的安全性,获得评价安全性的重要特征参数,本文针对锂离子软包电池,设计并搭建了电池高温自燃实验系统。详细地介绍了包括加热腔、电加热温控系统、采集测量系统、电池送入系统以及尾气处理等子系统的构成和主要功能,并基于此实验系统开展了500℃下锂离子软包电池的燃烧特性研究,实验研究结果表明:该软包电池燃烧时最高温度可达到954.2℃,电池燃烧持续时间为53 s,其电解液和聚乙烯隔膜是软包电池燃烧的主要成分。本文实验系统可测试不同温度下软包电池的燃烧特性,为研究高温环境下软包电池的安全性提供了新的实验方法。
In order to truly reflect the safety of flexible pack batteries under a high-temperature environment and obtain important characteristic parameters for evaluating safety, this paper designs and constructs a battery high-temperature combustion experimental system for lithium-ion flexible pack batteries. The composition and main functions of the subsystems, including the heating chamber, electric heating temperature control system, acquisition and measurement system, battery feeding system and exhaust gas treatment, are introduced in detail. Based on this experimental system, a study on the combustion characteristics of lithium-ion flexible-packed batteries at 500℃ was conducted. The experimental results indicated that the maximum temperature during the combustion of the flexible-packed batteries could reach 954.2°C, with a combustion duration of 53 seconds. The electrolyte and polyethylene separator were identified as the main components contributing to the combustion of the flexible pack battery. The experimental system in this paper can test the combustion characteristics of flexible pack batteries at different temperatures, which provides a new experimental method for the study of the safety of flexible pack batteries under high-temperature environments.
[1] | 郭煜, 王亦伟, 彭鹏, 等. 基于孤立森林算法的锂离子电池微内短路故障诊断方法[J/OL]. 储能科学与技术, 2024: 1-13. https://doi.org/10.19799/j.cnki.2095-4239.2024.0509, 2024-08-14. |
[2] | Hu, J., Jin, Z., Zhong, H., Zhan, H., Zhou, Y. and Li, Z. (2012) A New Phosphonamidate as Flame Retardant Additive in Electrolytes for Lithium Ion Batteries. Journal of Power Sources, 197, 297-300. https://doi.org/10.1016/j.jpowsour.2011.09.012 |
[3] | Jin, Z., Wu, L., Song, Z., Yan, K., Zhan, H. and Li, Z. (2012) A New Class of Phosphates as Co-Solvents for Nonflammable Lithium Ion Batteries Electrolytes. ECS Electrochemistry Letters, 1, A55-A58. https://doi.org/10.1149/2.007203eel |
[4] | Dunn, R.P., Kafle, J., Krause, F.C., Hwang, C., Ratnakumar, B.V., Smart, M.C., et al. (2012) Electrochemical Analysis of Li-Ion Cells Containing Triphenyl Phosphate. Journal of the Electrochemical Society, 159, A2100-A2108. https://doi.org/10.1149/2.081212jes |
[5] | Shim, E., Nam, T., Kim, J., Kim, H. and Moon, S. (2008) Diphenyloctyl Phosphate as a Flame-Retardant Additive in Electrolyte for Li-Ion Batteries. Journal of Power Sources, 175, 533-539. https://doi.org/10.1016/j.jpowsour.2007.08.098 |
[6] | Murmann, P., Mönnighoff, X., von Aspern, N., Janssen, P., Kalinovich, N., Shevchuk, M., et al. (2016) Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries: Studies on Fluorinated Compounds Deriving from Triethyl Phosphate. Journal of the Electrochemical Society, 163, A751-A757. https://doi.org/10.1149/2.1031605jes |
[7] | Wang, Q., Liu, P., Li, S., Wang, X., Li, F., Ma, J., et al. (2017) A Flame Retardant Ionic Conductor Additive for Safety-Reinforced Liquid Electrolyte of Lithium Batteries. Journal of The Electrochemical Society, 164, A1559-A1563. https://doi.org/10.1149/2.1111707jes |
[8] | Zhu, L., Yan, T., Jia, D., Wang, Y., Wu, Q., Gu, H., et al. (2019) LiFePO4-Coated LiNi0.5Co0.2Mn0.3O2 Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium Ion Pouch Cells. Journal of the Electrochemical Society, 166, A5437-A5444. https://doi.org/10.1149/2.0651903jes |
[9] | Hong, Z., Dong, H., Han, S., Li, W., Dong, Q., Cao, Y., et al. (2021) Nail Penetration-Safe LiNi0.6Co0.2Mn0.2O2 Pouch Cells Enabled by LiMn0.7Fe0.3PO4 Cathode Safety Additive. Journal of Power Sources, 512, Article ID: 230505. https://doi.org/10.1016/j.jpowsour.2021.230505 |
[10] | Wu, C., Wu, Y., Xu, X., Ren, D., Li, Y., Chang, R., et al. (2022) Synergistic Dual-Salt Electrolyte for Safe and High-Voltage LiNi0.8Co0.1Mn0.1O2//Graphite Pouch Cells. ACS Applied Materials & Interfaces, 14, 10467-10477. https://doi.org/10.1021/acsami.1c24831 |
[11] | Tsujikawa, T., Yabuta, K., Matsushita, T., Matsushima, T., Hayashi, K. and Arakawa, M. (2009) Characteristics of Lithium-Ion Battery with Non-Flammable Electrolyte. Journal of Power Sources, 189, 429-434. https://doi.org/10.1016/j.jpowsour.2009.02.010 |