|
机械行业数字孪生技术发展趋势分析
|
Abstract:
数字孪生技术作为新一代信息技术中的重要组成部分,已经在多个领域展现了其巨大潜力和广泛应用。特别是在机械行业中,数字孪生技术通过虚拟和现实的结合,实现了对物理设备和流程的实时监测、模拟和优化,从而提升了生产效率、降低了维护成本,并促进了智能制造的发展。本论文对机械行业数字孪生技术进行概述,探讨了该技术在机械行业中的应用现状和未来发展趋势。通过对机械行业数字孪生技术发展概述的系统分析,本研究为行业相关方提供了有价值的见解和决策依据。
As an important part of the new generation of information technology, digital twin technology has shown its great potential and wide application in many fields. Especially in the machinery industry, digital twin technology realizes real-time monitoring, simulation and optimization of physical equipment and processing flow, through the combination of virtual and reality, thereby improving production efficiency, reducing maintenance costs, and promoting the development of intelligent manufacturing. This paper summarizes the digital twin technology in the mechanical industry, and discusses the application status and future development trend of the technology in the mechanical industry. Through the systematic analysis of the development of digital twin technology in the machinery industry, this study provides valuable insights and a basis for decision-making for interested parties in the machinery industry.
[1] | 光新军, 李婧, 闫娜, 等. 基于专利分析的智慧油气藏数字孪生技术发展态势及建议[J]. 石油科技论坛, 2024, 43(2): 83-94. |
[2] | 罗泰晔. 制造业数字创新生态系统共生机制研究[D]: [博士学位论文]. 广州: 华南理工大学, 2022. |
[3] | 李琳利, 顾复, 李浩, 等. 仿生视角的数字孪生系统信息安全框架及技术[J]. 浙江大学学报(工学版), 2022, 56(3): 419-435. |
[4] | 张鹏, 冯浩, 杨通达, 等. 数字孪生与TRIZ集成迭代参数演化创新设计过程模型[J]. 计算机集成制造系统, 2019, 25(6): 1361-1370. |
[5] | Xiang, F., Zhang, Z., Zuo, Y. and Tao, F. (2019) Digital Twin Driven Green Material Optimal-Selection towards Sustainable Manufacturing. Procedia CIRP, 81, 1290-1294. https://doi.org/10.1016/j.procir.2019.04.015 |
[6] | 李浩, 王昊琪, 程颖, 等. 数据驱动的复杂产品智能服务技术与应用[J]. 中国机械工程, 2020, 31(7): 757-772. |
[7] | 李浩, 陶飞, 王昊琪, 宋文燕, 张在房, 樊蓓蓓, 武春龙, 李玉鹏, 李琳利, 文笑雨, 张新生, 罗国富. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25(6): 1320-1336. |
[8] | 张璐瑶. 复杂产品设计-制造-服务的协同设计及创新路径研究[D]: [博士学位论文]. 上海: 上海海事大学, 2022. |
[9] | 李雪瑞, 侯幸刚, 杨梅, 等. 数字孪生驱动的工业产品CMF设计服务模型构建与应用[J]. 计算机集成制造系统, 2021, 27(2): 307-327. |
[10] | Huang, S., Wang, G. and Yan, Y. (2020) Building Blocks for Digital Twin of Reconfigurable Machine Tools from Design Perspective. International Journal of Production Research, 60, 942-956. https://doi.org/10.1080/00207543.2020.1847340 |
[11] | 王昊琪, 李浩, 文笑雨, 等. 基于数字孪生的产品设计过程和工作量预测方法[J]. 计算机集成制造系统, 2022, 28(1): 17-30. |
[12] | Ward, R., Sun, C., Dominguez-Caballero, J., Ojo, S., Ayvar-Soberanis, S., Curtis, D., et al. (2021) Machining Digital Twin Using Real-Time Model-Based Simulations and Lookahead Function for Closed Loop Machining Control. The International Journal of Advanced Manufacturing Technology, 117, 3615-3629. https://doi.org/10.1007/s00170-021-07867-w |
[13] | 宋思蒙, 蒋增强, 马靖, 等. 基于数字孪生的模块化生产系统运行机制及重构方法[J]. 计算机集成制造系统, 2021, 27(2): 510-520. |
[14] | 刘世民. 面向切削加工过程的产品数字孪生拟态建模与自适应演化方法[D]: [博士学位论文]. 上海: 东华大学, 2022. |
[15] | 吴定会, 张桐瑞, 张秀丽. 扰动累积下基于数字孪生的车间重调度[J]. 系统仿真学报, 2022, 34(3): 573-583. |
[16] | 马靖, 王译晨, 赵明, 等. 基于数字孪生的生产单元可视化管控[J]. 计算机集成制造系统, 2021, 27(5): 1256-1268. |
[17] | 吴鹏兴, 郭宇, 黄少华, 等. 基于数字孪生的离散制造车间可视化实时监控方法[J]. 计算机集成制造系统, 2021, 27(6): 1605-1616. |
[18] | Deebak, B.D. and Al‐Turjman, F. (2021) Digital‐Twin Assisted: Fault Diagnosis Using Deep Transfer Learning for Machining Tool Condition. International Journal of Intelligent Systems, 37, 10289-10316. https://doi.org/10.1002/int.22493 |
[19] | Xiong, M., Wang, H., Fu, Q. and Xu, Y. (2021) Digital Twin-Driven Aero-Engine Intelligent Predictive Maintenance. The International Journal of Advanced Manufacturing Technology, 114, 3751-3761. https://doi.org/10.1007/s00170-021-06976-w |
[20] | 刘劲松. 高档数控机床数字孪生关键技术研究与应用[D]: [博士学位论文]. 沈阳: 中国科学院沈阳计算技术研究所, 2022. |
[21] | 向胜涛. 面向健康监测的斜拉桥钢箱组合梁数字孪生温度模型及其应用研究[D]: [博士学位论文]. 长沙: 长沙理工大学, 2022. |
[22] | 上官端森. 面向机电系统状态监控和诊断的数字孪生关键技术研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2022. |
[23] | Castellani, A., Schmitt, S. and Squartini, S. (2021) Real-World Anomaly Detection by Using Digital Twin Systems and Weakly Supervised Learning. IEEE Transactions on Industrial Informatics, 17, 4733-4742. https://doi.org/10.1109/tii.2020.3019788 |
[24] | 彭海波. 面向数字孪生的钢铁冶金企业智能工厂建设研究与实践[D]: [博士学位论文]. 昆明: 昆明理工大学, 2023 |
[25] | Wei, Y., Hu, T., Zhou, T., Ye, Y. and Luo, W. (2021) Consistency Retention Method for CNC Machine Tool Digital Twin Model. Journal of Manufacturing Systems, 58, 313-322. https://doi.org/10.1016/j.jmsy.2020.06.002 |
[26] | Wang, P. and Luo, M. (2021) A Digital Twin-Based Big Data Virtual and Real Fusion Learning Reference Framework Supported by Industrial Internet Towards Smart Manufacturing. Journal of Manufacturing Systems, 58, 16-32. https://doi.org/10.1016/j.jmsy.2020.11.012 |