全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能技术在水利学科的应用与教学实践
Application and Teaching Practice of Artificial Intelligence in Hydraulic Engineering

DOI: 10.12677/ae.2024.1491817, PP. 1427-1432

Keywords: 人工智能,水利工程,教学,创新,人才培养
Artificial Intelligence
, Hydraulic Engineering, Teaching, Innovation, Talent Cultivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,人工智能技术迅猛发展,为水利学科提供了新的工具和方法,特别是在水利大数据分析、模型预测和优化决策方面。与此同时,人工智能技术也对水利学科的高等教育提出了新的要求,推动了教学内容和方法革新。本文探讨了人工智能技术在水利学科教学中的应用方式,研究如何通过教育实践培养适应新时期需求的水利专业人才,并展望了人工智能技术在水利学科中的未来发展方向及主要挑战。
In recent years, the rapid development of artificial intelligence (AI) technology has provided new tools and methods for hydraulic engineering, particularly in data analysis, model prediction, and decision optimization. Simultaneously, the application of AI has posed new requirements for education in hydraulic engineering, driving innovations in teaching content and methods. This article explores the integration of AI technology in the teaching of hydraulic engineering, examining how educational practices can be adapted to cultivate professionals who meet the modern demands of the field. It also looks ahead to the future development directions and challenges of AI technology in hydraulic engineering.

References

[1]  尹家波, 郭生练, 王俊, 等. 全球极端降水的热力学驱动机理及生态水文效应[J]. 中国科学: 地球科学, 2023, 53(1): 1-19.
[2]  尹家波, 郭生练, 杨妍, 等. 基于陆地水储量异常预估中国干旱及其社会经济暴露度[J]. 中国科学: 地球科学, 2022, 52(10): 2061-2076.
[3]  杨远航, 尹家波, 郭生练, 等. 中国陆域干旱演变预估及其生态水文效应[J]. 科学通报, 2023, 68(7): 817-829.
[4]  Yin, J. and Slater, L. (2023) Understanding Heatwave-Drought Compound Hazards and Impacts on Socio-Ecosystems. The Innovation Geoscience, 1, Article ID: 100042.
https://doi.org/10.59717/j.xinn-geo.2023.100042
[5]  尹家波, 郭生练, 顾磊, 等. 中国极端降水对气候变化的热力学响应机理及洪水效应[J]. 科学通报, 2021, 66(33): 4315-4325.
[6]  尹家波, 郭生练, 吴旭树, 等. 两变量设计洪水估计的不确定性及其对水库防洪安全的影响[J]. 水利学报, 2018, 49(6): 715-724.
[7]  Yin, J., Slater, L.J., Liu, P., Liu, D. and Cheng, J. (2024) Socio-Economic Inequality Exacerbated by Climate Change. The Innovation Geoscience, 2, 100078.
https://doi.org/10.59717/j.xinn-geo.2024.100078
[8]  Huang, X., Yin, J., Slater, L.J., Kang, S., He, S. and Liu, P. (2024) Global Projection of Flood Risk with a Bivariate Framework under 1.5-3.0˚C Warming Levels. Earths Future, 12, e2023EF004312.
https://doi.org/10.1029/2023ef004312

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133