|
几种遥感影像分类方法比较与分析
|
Abstract:
遥感技术是一种重要的自然资源调查监测手段,国内外研究学者提出多种监督分类算法,具有不同的分类精度和特点,各种监督分类算法被集成到不同的软件平台。为获取各分类算法及其在不同平台的分类精度,本文以某县为研究区域,选取哨兵Sentinel-2多光谱影像为实验影像,利用多种监督分类方法进行分类,并将2021年国土变更调查数据作为标准数据,采用全样本定量评价方法检验不同分类方法的精度及特点。经实验证明,基于ArcGIS的最大似然法分类精度最高,基于ENVI的支持向量机法对各地类分类效果更为均衡,基于简译的面向对象分类方法在10米分辨率影像的分类精度与传统分类方法差距不明显,本文实验结果对研究及工作人员选取监督分类方法具有重要的参考价值。
Remote sensing technology is an important means of natural resource investigation and monitoring. Domestic and foreign researchers have proposed various supervised classification algorithms with different classification accuracy and characteristics. Various supervised classification algorithms are integrated into different software platforms. In order to obtain the classification accuracy of various classification algorithms on different platforms, this article takes a certain county as the research area, selects Sentinel-2 multispectral images as experimental images, uses multiple supervised classification methods for classification, and uses the 2021 land change survey data as standard data. The accuracy and characteristics of different classification methods are tested using a full sample quantitative evaluation method. Experimental results have shown that the maximum likelihood method based on ArcGIS has the highest classification accuracy, while the support vector machine method based on ENVI has a more balanced classification effect on different regions. The object-oriented classification method based on simplified translation has no significant difference in classification accuracy compared to traditional classification methods in 10-meter resolution images. The experimental results of this article have important reference value for research and staff to choose supervised classification methods.
[1] | 武英洁, 冯勇, 徐晓琳, 等. 典型遥感影像分类方法适用性分析[J]. 现代电子技术, 2024, 47(6): 137-141. |
[2] | 杨星, 方乐缘, 岳俊. 高光谱遥感影像半监督分类研究进展[J]. 遥感学报, 2024, 28(1): 20-41. |
[3] | 黄晓涵, 黄文龙. 基于深度学习的多时序遥感影像水稻提取研究[J]. 地理空间信息, 2023, 21(8): 61-64+113. |
[4] | 王研. 基于MST-DeepLabv3+模型的高分辨率遥感影像耕地提取研究[D]: [硕士学位论文]. 郑州: 河南大学, 2023. |
[5] | 陈继发. 基于深度学习的高分辨率遥感影像海岸带地表覆盖分类研究[D]: [博士学位论文]. 北京: 中国地质大学, 2023. |
[6] | 陈雨琪. 多源遥感数据冬小麦农情监测和烘干点路径分析研究[D]: [硕士学位论文]. 杭州: 杭州师范大学, 2023. |