|
基于贝叶斯网络的空管信息抽取相关性偏差分析
|
Abstract:
本文首先结合事件类型识别出危险源文本中相应的事件,接着识别对相关性存在影响的中性词语,建立基于后门调整的主题分析模型,剔除主题混杂和语义相似性偏差带来的相关性分析不准确的问题。最后,基于贝叶斯网络计算不同节点的发生概率并得到非完整链路和完整链路的演化分析结果。
In this paper, we first identify the corresponding events in the text of the hazard source by combining the event types, then identify the neutral words that have an influence on the correlation, and establish the theme analysis model based on backdoor adjustment to eliminate the inaccuracy of the correlation analysis caused by the theme mixing and semantic similarity deviation. Finally, based on Bayesian network, we calculate the occurrence probability of different nodes and obtain the evolution analysis results of non-complete and complete links.
[1] | 佘雅莉. 民航空管危险源识别及其应用研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2018. |
[2] | 毛佳静. EoR技术应用的风险评估[D]: [硕士学位论文]. 德阳: 中国民用航空飞行学院, 2022. |
[3] | 李海, 陈勇刚, 刘雨佳. 基于AHP的通航运行中危险源危险程度评估方法研究[J]. 西安航空学院学报, 2018, 36(5): 41-44. |
[4] | 蒋美芝, 吕靖, 王爽. 基于动态贝叶斯网络的海上通道风险预警[J]. 运筹与管理, 2023, 32(10): 63-68. |
[5] | Raskin, V., Taylor, J.M. and Hempelmann, C.F. (2013) Meaning-and Ontology-Based Technologies for High-Precision Language an Information-Processing Computational Systems. Advanced Engineering Informatics, 27, 4-12. https://doi.org/10.1016/j.aei.2012.12.002 |
[6] | 王洁宁, 杨海滨. 面向空管安全系统中人为因素的本体建模分析[J]. 中国民航大学学报, 2009, 27(4): 33-36. |
[7] | 刘继新, 沈丽楠. 空管安全系统中人为因素的本体建模研究[J]. 武汉理工大学学报(信息与管理工程版), 2011, 33(4): 656-659. |
[8] | Zhao, Y., Hua, S. and Ren, X. (2017) Relevance Research of Threat/Error and Undesired States in Air Traffic Management Based on Bayesian Network Model. Journal of Air Transport Management, 60, 45-48. https://doi.org/10.1016/j.jairtraman.2017.01.001 |
[9] | 徐一旻, 田梦莹, 李治, 等. FTA-BN在机场跑道入侵事故影响因素分析中的应用[J]. 安全与环境学报, 2023, 23(5): 1361-1367. |
[10] | Landeiro, V., Tran, T. and Culotta, A. (2019) Discovering and Controlling for Latent Confounds in Text Classification Using Adversarial Domain Adaptation. In: Proceedings of the 2019 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, 298-305. https://doi.org/10.1137/1.9781611975673.34 |