全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数字孪生的牵引变流冷却系统PHM构建
Construction of PHM for Traction Inverter Cooling System Based on Digital Twin Technology

DOI: 10.12677/ojtt.2024.135039, PP. 359-366

Keywords: 数字孪生,建模,PHM,牵引变流冷却系统
Digital Twin
, Modeling, PHM, Traction Inverter Cooling System

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过智慧化运维降本增效是提高中国城市轨道交通可持续发展能力的重要途径之一,将数字孪生技术应用在轨道交通车辆故障预测与健康管理(PHM)中,可以有效解决传统PHM的不足。本文提出了一种基于数字孪生技术的牵引变流器冷却系统PHM的构建方法。首先构建了牵引变流冷却系统关键子系统物理实体的数字孪生体,包括机理模型和数字模型;然后通过虚实之间的数字映射和健康域的标定,并采用岭回归、循环神经网络、随机森林等方式进行模型训练,得到最优的模型组合;最后以变流器柜体温度预测进行了模型测试。结果表明,该模型的预测效果与实际系统的运行结果基本吻合,可以进一步作为变流器冷却系统故障预测和故障定位的开发基础。
Reducing costs and increasing efficiency through Intelligent Operation and Maintenance (IOM) is one of the most important ways to improve the sustainable development of China’s urban rail transit. The application of digital twin technology in the Prognostics and Health Management (PHM) of rail transit vehicles can effectively address the shortcomings of traditional PHM methods. This paper proposes a construction method for a traction inverter cooling system PHM based on digital twin technology. Firstly, a digital twin of the physical entities of the key subsystems of the traction inverter cooling system was constructed, including the mechanism model and the digital model; then, the optimal model combination was obtained through the numerical mapping between the real and the imaginary and the calibration of the health domains, and the model training was carried out by using ridge regression, recurrent neural network, and random forests, etc.; finally, the model was tested for predicting the temperature of the inverter cabinet. The results showed that the prediction performance of the model was basically consistent with the operation results of the actual system, indicating that the model can be further used as a development foundation for the fault prediction and location of the inverter cooling system.

References

[1]  陆剑峰, 徐煜昊, 夏路遥, 等. 数字孪生支持下的设备故障预测与健康管理方法综述[J]. 自动化仪表, 2022, 43(6): 1-7+12.
[2]  陆航, 董威, 董光磊. 国内外轨道交通PHM应用现状综述[J]. 中国铁路, 2023(4): 82-93.
[3]  Tao, F., Zhang, M., Liu, Y.S. and Nee, A.Y.C. (2018) Digital Twin Driven Prognostics and Health Management for Complex Equipment. CIRP Annals, 67, 169-172.
https://doi.org/10.1016/j.cirp.2018.04.055
[4]  辛佐先, 裴芳琼, 王柳. 城市轨道交通数字孪生技术架构及其应用[J]. 城市轨道交通研究, 2023, 26(8): 213-217.
[5]  都青华. 数字孪生技术在轨道交通车辆全寿命周期管理中的应用思路[J]. 城市轨道交通研究, 2023, 26(4): 131-134.
[6]  李丰辉. 基于PHM理论的CRH380B(L)型动车组牵引冷却系统故障研究[D]: [硕士学位论文]. 北京: 中国铁道科学研究院, 2022.
[7]  西南交通大学. 基于数字孪生模型的单相PWM整流器健康状态参数监测方法[P]. 中国专利, CN202310479781.6. 2023-08-01.
[8]  胡存刚, 王海涛, 朱文杰, 等. 三相逆变器数字孪生系统的参数辨识研究[J]. 电力系统保护与控制, 2023, 51(11): 177-187.
[9]  蒋启伟. 牵引变流器冷却系统的研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133