|
钢轨三维擦伤状态对波磨发展的影响研究
|
Abstract:
建立一种可计算沿钢轨纵向和横向三维分布的钢轨磨耗演化预测模型,利用车辆–轨道耦合动力学计算轮轨动态相互作用,基于Hertz滚动接触理论进行轮轨滚动接触分析,轮轨切向接触选用Fastsim理论,选用USFD磨耗模型计算材料磨耗。运用该模型计算分析我国某型动车组以180 km/h速度在通过轨面擦伤后钢轨磨耗的演变形态,结果表明,车辆通过擦伤后形成波长约为210 mm的钢轨波磨,其频率236 Hz与车辆中一系悬挂弹簧的固有频率相符合。通过对比考虑与不考虑擦伤三维状态的钢轨擦伤发现,当考虑钢轨三维擦伤状态时,所获得的预测结果更加接近实际情况,能够更准确地预测车辆通过擦伤后的磨耗情况。
A model has been established to predict the evolution of rail abrasion. This model can calculate the longitudinal and transverse three-dimensional distribution along the rail. The model uses vehicle-rail coupled dynamics to calculate the dynamic interaction between the wheel and rail. The Hertz rolling contact theory is used for rolling contact analysis of the wheel and rail, and Fastsim theory is used for tangential contact of the wheel and rail. The USFD abrasion model is used for calculating the abrasion of the material. When using this model to calculate and analyze the train at a speed of 180 km/h, the results show that the vehicle causes rail wear through scuffing, resulting in a wavelength of approximately 210 mm and a frequency of 236 Hz. The vehicle’s intrinsic frequency is in line with a series of suspension springs. By comparing rail abrasion with and without considering its three-dimensional state, it was found that the prediction results obtained when considering the three-dimensional state were closer to the actual situation. This allows for a more accurate prediction of vehicle wear after passing through the abrasion.
[1] | 温泽峰. 钢轨波浪形磨损研究[D]: [博士学位论文]. 成都: 西南交通大学, 2006. |
[2] | 丁军君, 李东宇, 王军平, 等. 钢轨磨耗对轮轨滚动接触关系的影响研究[J]. 机械工程学报, 2018, 54(4): 142-149. |
[3] | 梁喜仁, 陶功权, 陆文教, 等. 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报, 2019, 55(2): 147-155. |
[4] | Cui, D., Zhang, X., Wang, R., An, B., Li, L. (2022) The Effect of 3D Wear State of Wheel Polygon on Wheel—Rail System Dynamics. Vehicle System Dynamics, 60, 3109-3126. https://doi.org/10.1080/00423114.2021.1939064 |
[5] | 周素霞, 孙锐, 刘金朝, 等. 轨道车辆通过钢轨凹坑时的响应分析[J]. 铁道学报, 2020, 42(12): 36-41. |
[6] | 熊嘉阳, 金学松. 铁路曲线钢轨横向凹坑对初始波磨形成的影响[J]. 工程力学, 2006(6): 135-141+134. |
[7] | Li, Z., Zhao, X., Esveld, C., Dollevoet, R., Molodova, M. (2008) An Investigation into the Causes of Squats—Correlation Analysis and Numerical Modeling. Wear, 265, 1349-1355. https://doi.org/10.1016/j.wear.2008.02.037 |
[8] | Li, Z., Dollevoet, R., Molodova, M., Zhao, X. (2011) Squat Growth—Some Observations and the Validation of Numerical Predictions. Wear, 271, 148-157. https://doi.org/10.1016/j.wear.2010.10.051 |
[9] | 李响, 任尊松, 徐宁. 地铁小半径曲线段钢弹簧浮置板轨道的钢轨波磨研究[J]. 铁道学报, 2017, 39(8): 70-76. |
[10] | 刘学毅, 王平, 万复光. 重载线路钢轨波形磨耗成因研究[J]. 铁道学报, 2000(1): 98-103. |
[11] | 金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004. |
[12] | 翟婉明. 车辆-轨道耦合动力学[M]. 第3版. 北京: 科学出版社, 2007. |
[13] | 周志军. 基于轮轨瞬态滚动接触行为模拟的地铁钢轨短波长波磨形成机理研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2020. |
[14] | Schupp, G., Weidemann, C. and Mauer, L. (2004) Modelling the Contact between Wheel and Rail within Multibody System Simulation. Vehicle System Dynamics, 41, 349-364. https://doi.org/10.1080/00423110412331300326 |
[15] | 吴安伟, 罗赟. 变截面道岔振动特性研究[J]. 铁道建筑, 2006(4): 82-85. |
[16] | 陈雨, 安博洋, 潘自立, 等. 考虑尖轨变截面廓形的轮轨接触与磨耗分析[J]. 西南交通大学学报, 2022, 57(6): 1250-1258. |