|
基于蛋白质组学的动脉粥样硬化研究进展
|
Abstract:
动脉粥样硬化(atherosclerosis, AS)是心血管疾病最常见的危险因素之一,随着现代社会生产生活方式、饮食结构等因素的改变,其发病率显著增加,而AS的斑块也常引起冠心病、脑血管意外的风险增加。近年来关于AS分子机制的研究不少,但都偏向于局部某种信号通路或某种细胞的功能,都没有从整体水平上来研究其机制。蛋白质组学是从整体水平基础上,研究蛋白质结构、功能、相互作用,获得蛋白质水平上关于疾病发生发展、细胞代谢等整体而全面的认识。基于蛋白质组学角度研究AS的血液蛋白、组织蛋白、细胞外囊泡蛋白、斑块内蛋白等,能从整体水平认识AS的分子机制。现阐述基于蛋白质组学的AS研究进展。
Atherosclerosis (AS) is one of the most common risk factors for cardiovascular disease. With changes in production and life style, diet structure and other factors in modern society, the incidence has increased significantly. AS plaques also often cause increased risk of coronary heart disease and cerebrovascular accidents. In recent years, there have been a lot of studies on the molecular mecha-nism of AS, but all of them tend to focus on some local signaling pathway or some cell function, but have not studied its mechanism from the overall level. Proteomics studies protein structure, function and interaction on the basis of the overall level, so as to obtain an overall and comprehensive understanding of disease development and cell metabolism at the protein level. The study of blood proteins, histones, extracellular vesicle proteins and plaque proteins of AS from the perspective of proteomics can understand the molecular mechanism of AS from the overall level. The progress of AS research based on proteomics is reviewed here.
[1] | 中国医师协会中西医结合分会心血管专业委员会, 中华中医药学会心血管病分会. 动脉粥样硬化中西医防治专家共识(2021年) [J]. 中国中西医结合杂志, 2022, 42(3): 287-293. |
[2] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578. |
[3] | Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. https://doi.org/10.1038/s41586-021-03392-8 |
[4] | Diamante, G., Ha, S.M., Wijaya, D. and Yang, X. (2024) Single Cell Multiomics Systems Biology for Molecular Toxicity. Current Opinion in Toxicology, 39, Article ID: 100477. https://doi.org/10.1016/j.cotox.2024.100477 |
[5] | Leong, X. (2021) Lipid Oxidation Products on Inflammation-Mediated Hypertension and Atherosclerosis: A Mini Review. Frontiers in Nutrition, 8, Article 717740. https://doi.org/10.3389/fnut.2021.717740 |
[6] | Gianazza, E., Brioschi, M., Martinez Fernandez, A., Casalnuovo, F., Altomare, A., Aldini, G., et al. (2021) Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxidants & Redox Signaling, 34, 49-98. https://doi.org/10.1089/ars.2019.7955 |
[7] | Zhang, J., Wang, Y., Wang, X., Xu, L., Yang, X. and Zhao, W. (2019) PKC-Mediated Endothelin-1 Expression in Endothelial Cell Promotes Macrophage Activation in Atherogenesis. American Journal of Hypertension, 32, 880-889. https://doi.org/10.1093/ajh/hpz069 |
[8] | Akhmedov, A., Sawamura, T., Chen, C., Kraler, S., Vdovenko, D. and Lüscher, T.F. (2020) Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1): A Crucial Driver of Atherosclerotic Cardiovascular Disease. European Heart Journal, 42, 1797-1807. https://doi.org/10.1093/eurheartj/ehaa770 |
[9] | Liu, X., Guo, J., Lin, X., Tuo, Y., Peng, W., He, S., et al. (2021) Macrophage NFATc3 Prevents Foam Cell Formation and Atherosclerosis: Evidence and Mechanisms. European Heart Journal, 42, 4847-4861. https://doi.org/10.1093/eurheartj/ehab660 |
[10] | Björkegren, J.L.M. and Lusis, A.J. (2022) Atherosclerosis: Recent Developments. Cell, 185, 1630-1645. https://doi.org/10.1016/j.cell.2022.04.004 |
[11] | Kojima, Y., Ye, J., Nanda, V., Wang, Y., Flores, A.M., Jarr, K., et al. (2020) Knockout of the Murine Ortholog to the Human 9p21 Coronary Artery Disease Locus Leads to Smooth Muscle Cell Proliferation, Vascular Calcification, and Advanced Atherosclerosis. Circulation, 141, 1274-1276. https://doi.org/10.1161/circulationaha.119.043413 |
[12] | Vacante, F., Rodor, J., Lalwani, M.K., Mahmoud, A.D., Bennett, M., De Pace, A.L., et al. (2021) CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circulation Research, 128, 1258-1275. https://doi.org/10.1161/circresaha.120.318688 |
[13] | Nurmohamed, N.S., Belo Pereira, J.P., Hoogeveen, R.M., Kroon, J., Kraaijenhof, J.M., Waissi, F., et al. (2022) Targeted Proteomics Improves Cardiovascular Risk Prediction in Secondary Prevention. European Heart Journal, 43, 1569-1577. https://doi.org/10.1093/eurheartj/ehac055 |
[14] | Kato, E.T., Morrow, D.A., Guo, J., Berg, D.D., Blazing, M.A., Bohula, E.A., et al. (2022) Growth Differentiation Factor 15 and Cardiovascular Risk: Individual Patient Meta-Analysis. European Heart Journal, 44, 293-300. https://doi.org/10.1093/eurheartj/ehac577 |
[15] | Rox, K., Rath, S., Pieper, D.H., Vital, M. and Brönstrup, M. (2021) A Simplified LC-MS/MS Method for the Quantification of the Cardiovascular Disease Biomarker Trimethylamine-N-Oxide and Its Precursors. Journal of Pharmaceutical Analysis, 11, 523-528. https://doi.org/10.1016/j.jpha.2021.03.007 |
[16] | Bossone, E., Czerny, M., Lerakis, S., Rodríguez-Palomares, J., Kukar, N., Ranieri, B., et al. (2021) Imaging and Biomarkers in Acute Aortic Syndromes: Diagnostic and Prognostic Implications. Current Problems in Cardiology, 46, Article ID: 100654. https://doi.org/10.1016/j.cpcardiol.2020.100654 |
[17] | Adamstein, N.H., Cornel, J.H., Davidson, M., Libby, P., de Remigis, A., Jensen, C., et al. (2023) Association of Interleukin 6 Inhibition with Ziltivekimab and the Neutrophil-Lymphocyte Ratio: A Secondary Analysis of the RESCUE Clinical Trial. JAMA Cardiology, 8, 177-181. https://doi.org/10.1001/jamacardio.2022.4277 |
[18] | Ong, K.L., McClelland, R.L., Allison, M.A., Cushman, M., Garg, P.K., Tsai, M.Y., et al. (2021) Lipoprotein (a) and Coronary Artery Calcification: Prospective Study Assessing Interactions with Other Risk Factors. Metabolism, 116, Article ID: 154706. https://doi.org/10.1016/j.metabol.2021.154706 |
[19] | Saaoud, F., Drummer I.V., C., Shao, Y., Sun, Y., Lu, Y., Xu, K., et al. (2021) Circular RNAs Are a Novel Type of Non-Coding RNAs in ROS Regulation, Cardiovascular Metabolic Inflammations and Cancers. Pharmacology & Therapeutics, 220, Article ID: 107715. https://doi.org/10.1016/j.pharmthera.2020.107715 |
[20] | Détriché, G., Gendron, N., Philippe, A., Gruest, M., Billoir, P., Rossi, E., et al. (2022) Gonadotropins as Novel Active Partners in Vascular Diseases: Insight from Angiogenic Properties and Thrombotic Potential of Endothelial Colony‐forming Cells. Journal of Thrombosis and Haemostasis, 20, 230-237. https://doi.org/10.1111/jth.15549 |
[21] | Qi, G., Diao, X., Hou, S., Kong, J. and Jin, Y. (2022) Label-Free SERS Detection of Protein Damage in Organelles under Electrostimulation with 2D AuNPs-Based Nanomembranes as Substrates. Analytical Chemistry, 94, 14931-14937. https://doi.org/10.1021/acs.analchem.2c02401 |
[22] | Müller, J.B., Geyer, P.E., Colaço, A.R., Treit, P.V., Strauss, M.T., Oroshi, M., et al. (2020) The Proteome Landscape of the Kingdoms of Life. Nature, 582, 592-596. https://doi.org/10.1038/s41586-020-2402-x |
[23] | Kustatscher, G., Collins, T., Gingras, A., Guo, T., Hermjakob, H., Ideker, T., et al. (2022) Understudied Proteins: Opportunities and Challenges for Functional Proteomics. Nature Methods, 19, 774-779. https://doi.org/10.1038/s41592-022-01454-x |
[24] | Iacobucci, I., Monaco, V., Cozzolino, F. and Monti, M. (2021) From Classical to New Generation Approaches: An Excursus of-Omics Methods for Investigation of Protein-Protein Interaction Networks. Journal of Proteomics, 230, Article ID: 103990. https://doi.org/10.1016/j.jprot.2020.103990 |
[25] | Cooper, H.J. and Leney, A.C. (2021) Structural Proteomics and Protein Complexes—Special Issue. Proteomics, 21, e2000286. https://doi.org/10.1002/pmic.202000286 |
[26] | Mitra, G. (2020) Emerging Role of Mass Spectrometry‐based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins. Proteomics, 21, e2000011. https://doi.org/10.1002/pmic.202000011 |
[27] | Suhre, K., McCarthy, M.I. and Schwenk, J.M. (2020) Genetics Meets Proteomics: Perspectives for Large Population-Based Studies. Nature Reviews Genetics, 22, 19-37. https://doi.org/10.1038/s41576-020-0268-2 |
[28] | Ferkingstad, E., Sulem, P., Atlason, B.A., Sveinbjornsson, G., Magnusson, M.I., Styrmisdottir, E.L., et al. (2021) Large-scale Integration of the Plasma Proteome with Genetics and Disease. Nature Genetics, 53, 1712-1721. https://doi.org/10.1038/s41588-021-00978-w |
[29] | Stakhneva, E.M., Meshcheryakova, I.A., Demidov, E.A., et al. (2020) Changes in the Proteomic Profile of Blood Serum in Coronary Atherosclerosis. Journal of Medical Biochemistry, 39, 208-214. |
[30] | Fernández-Ruiz, I. (2022) Macropinocytosis Promotes Foam Cell Formation and Atherosclerosis. Nature Reviews Cardiology, 19, 781-781. https://doi.org/10.1038/s41569-022-00798-3 |
[31] | Zhang, Y., Fu, Y., Jia, L., Zhang, C., Cao, W., Alam, N., et al. (2022) TMT-Based Quantitative Proteomic Profiling of Human Monocyte-Derived Macrophages and Foam Cells. Proteome Science, 20, Article No. 1. https://doi.org/10.1186/s12953-021-00183-x |
[32] | Finamore, F., Nieddu, G., Rocchiccioli, S., Spirito, R., Guarino, A., Formato, M., et al. (2021) Apolipoprotein Signature of HDL and LDL from Atherosclerotic Patients in Relation with Carotid Plaque Typology: A Preliminary Report. Biomedicines, 9, Article 1156. https://doi.org/10.3390/biomedicines9091156 |
[33] | Kopczak, A., Schindler, A., Bayer-Karpinska, A., Koch, M.L., Sepp, D., Zeller, J., et al. (2020) Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke. Journal of the American College of Cardiology, 76, 2212-2222. https://doi.org/10.1016/j.jacc.2020.09.532 |
[34] | Mura, M., Della Schiava, N., Long, A., Chirico, E.N., Pialoux, V. and Millon, A. (2020) Carotid Intraplaque Haemorrhage: Pathogenesis, Histological Classification, Imaging Methods and Clinical Value. Annals of Translational Medicine, 8, 1273-1273. https://doi.org/10.21037/atm-20-1974 |
[35] | Bao, M., Zhang, R., Huang, X., Zhou, J., Guo, Z., Xu, B., et al. (2021) Transcriptomic and Proteomic Profiling of Human Stable and Unstable Carotid Atherosclerotic Plaques. Frontiers in Genetics, 12, Article 755507. https://doi.org/10.3389/fgene.2021.755507 |
[36] | Stakhneva, E.M., Meshcheryakova, I.A., Demidov, E.A., Starostin, K.V., Sadovski, E.V., Peltek, S.E., et al. (2019) A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics, 9, Article 177. https://doi.org/10.3390/diagnostics9040177 |
[37] | Mallia, A., Gianazza, E., Zoanni, B., Brioschi, M., Barbieri, S.S. and Banfi, C. (2020) Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics, 10, Article 843. https://doi.org/10.3390/diagnostics10100843 |
[38] | Isaac, R., Reis, F.C.G., Ying, W. and Olefsky, J.M. (2021) Exosomes as Mediators of Intercellular Crosstalk in Metabolism. Cell Metabolism, 33, 1744-1762. https://doi.org/10.1016/j.cmet.2021.08.006 |
[39] | Qian, F., Huang, Z., Zhong, H., Lei, Q., Ai, Y., Xie, Z., et al. (2022) Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS Nano, 16, 19980-20001. https://doi.org/10.1021/acsnano.2c11298 |
[40] | Staubach, S., Bauer, F.N., Tertel, T., Börger, V., Stambouli, O., Salzig, D., et al. (2021) Scaled Preparation of Extracellular Vesicles from Conditioned Media. Advanced Drug Delivery Reviews, 177, Article ID: 113940. https://doi.org/10.1016/j.addr.2021.113940 |
[41] | Yaker, L., Tebani, A., Lesueur, C., Dias, C., Jung, V., Bekri, S., et al. (2022) Extracellular Vesicles from LPS-Treated Macrophages Aggravate Smooth Muscle Cell Calcification by Propagating Inflammation and Oxidative Stress. Frontiers in Cell and Developmental Biology, 10, Article 823450. https://doi.org/10.3389/fcell.2022.823450 |