The use of groundwater for drinking water supply to the population is increasingly practiced in the rice cultivation area of Maga. However, there is a lack of knowledge about the hydrochemical characteristics of this water due to a lack of quality control. This study aims to contribute to the understanding of mineralization processes in order to establish the hydrochemical profile of the water in the area. The methodological approach consisted of collecting fifteen water samples from wells and boreholes during six campaigns for physicochemical analysis, and studying them through methods of interpreting hydrochemical data. The analysis results show that these waters are moderately mineralized. The water facies are mainly of the bicarbonate sodium and potassium type, as well as the bicarbonate calcium and magnesium type. Calculation of saturation indices demonstrates that evaporite minerals show lower degrees of saturation than carbonate minerals, with gypsum, anhydrite, and halite being in a highly undersaturated state. The mineralization of groundwater originates from the dissolution of surrounding rocks on the one hand, and anthropogenic activities involving exchanges between alkalis (Na+ and K+) in the aquifer and alkaline earth (Ca2+ and Mg2+), resulting in the fixation of alkaline earth and the dissolution of alkalis.
References
[1]
Aboubaker, M., Jalludin, M., & Razack, M. (2013). Hydrochemistry of a Complex Volcano-Sedimentary Aquifer Using Major Ions and Environmental Isotopes Data: Dalha Basalts Aquifer, Southwest of Republic of Djibouti. Environmental Earth Sciences, 70, 3335-3349. https://doi.org/10.1007/s12665-013-2398-8
[2]
Ahmadou, Y., Kouebou, C., Malaa, D., Bourou, S., Olina, J. P., & Mbiandoun, M. (2016). Les engrais et les pesticides dans la riziculture périurbaine de la ville de Ga-roua, au Nord-Cameroun: Cas de Nassarao et Boklé. International Journal of Inno-vation and Applied Studies, 18, 26-35.
[3]
Amharref, M., Aassine, S., Bernoussi, A. S., & Haddouchi, B. Y. (2007). Cartographie de la vulnérabilité à la pollution des eaux souterraines: Application à la plaine du Gharb (Maroc). Revue des sciences de l’eau, 20, 185-199. https://doi.org/10.7202/015812ar
[4]
Appelo, C. A. J., & Postma, D. (1993). Geochemistry, Groundwater & Pollution (1st ed.). A. A. Balkema Publishers, 536 p.
[5]
Biscaldi, R. (1970). Carte Hydrogéologique de la plaine du Tchad Eaux souterraines Echelle: 1/200000 Notice Explicative. BRGM.
[6]
Brabant, P., & Gavaud, M. (1985). Soils and Land Resources in Northern Cameroon. Coll Notice Explicative 103. MESIRES-IRA Yaounde, ORSTOM, 285 p.
[7]
Chadha, D. K. (1999). A Proposed New Diagram for Geochemical Classification of Natural Waters and Interpretation of Chemical Data. Hydrogeology Journal, 7, 431-439. https://doi.org/10.1007/s100400050216
[8]
Compaore, H., Ilboudo, S., Bambara, D., & Bama Nati, A. D. (2020). Pratiques paysannes d’utilisation des pesticides et pollution environnementale dans la com-mune de dano, province du ioba Burkina Faso. Asian Journal of Science and Tech-nology, 11, 10602-10610.
[9]
Detay, M. (1987). Prospection et identification des aquifères: Reconnaissances préliminaires et méthode d’implantation des ouvrages par étude de terrain et pho-tointerprétation. Session internationale de formation au Cefigre: Exploitation et gestion des ressources en eau souterraine.
[10]
Dhin Etia, F. C., Mvogo, G., & Honoré, B. (2022). Les déterminants d’accès à l’eau potable au Cameroun. African Development Review, 34, 154-170. https://doi.org/10.1111/1467-8268.12624
[11]
Diaw, M., Faye, S., Stichler, W., & Maloszewski, P. (2012). Isotopic and Geochemical Characteristics of Groundwater in the Senegal River Delta Aquifer: Implication of Recharge and Flow Regime. Environmental Earth Sciences, 66, 1011-1020. https://doi.org/10.1007/s12665-010-0710-4
[12]
Dindane, K., Bouchaou, L., Hsissou, Y., & Krimissa, M. (2003). Hydrochemical and Isotopic Characteristics of Groundwater in the Souss Upstream Basin, Southwestern Morocco. Journal of African Earth Sciences, 36, 315-327. https://doi.org/10.1016/s0899-5362(03)00050-2
[13]
Djuissi Tekam, D., Vogue, N., Nkfusai, C. N., Ebode Ela, M., & Cumber, S. N. (2019). Accès à l’eau potable et à l’assainissement: Cas de la commune d’arrondissement de Douala V (Cameroun). Pan African Medical Journal, 33, Article 33. https://doi.org/10.11604/pamj.2019.33.244.17974
[14]
Doumtoudjinodji, P., Bernadin, E. M., Mbaigane, J. C. D., Djoueingue, N., Agnichola, U., & Amadou, A. S. (2024). Hydrochemical Characterisation and Assessment of the Level of Contamination of Groundwater Collected by Private Waterworks in the Town of Moundou in the South of Chad. Journal of Geoscience and Environment Protection, 12, 13-32. https://doi.org/10.4236/gep.2024.121002
[15]
El Blidi, S., Fekhaoui, M., Serghini, A., & Abidi, A. (2006). Rizières de la plaine du Gharb (Maroc): Qualité des eaux superficielles et profondes. Bulletin de l’Institut Scientifique, Section Sciences de la Vie, 28, 55-60.
[16]
El Oumlouki, K., Moussadek, R., Zouahri, A., Dakak, H., Chati, M., & El amrani, M. (2014). Étude de la qualité physico-chimique des eaux et des sols de la région Souss Massa, (Cas de périmètre Issen), Maroc. Journal of Materials and Environmental Science, 5, 2365-2374.
[17]
Farid, I., Zouari, K., Rigane, A., & Beji, R. (2015). Origin of the Groundwater Salinity and Geochemical Processes in Detrital and Carbonate Aquifers: Case of Chougafiya Basin (central Tunisia). Journal of Hydrology, 530, 508-532. https://doi.org/10.1016/j.jhydrol.2015.10.009
[18]
Garcia, G., del V. Hidalgo, M., & Blesa, M. (2001). Geochemistry of Groundwater in the Alluvial Plain of Tucumán Province, Argentina. Hydrogeology Journal, 9, 597-610. https://doi.org/10.1007/s10040-001-0166-4
[19]
Gupta, S., Mahato, A., Roy, P., Datta, J. K., & Saha, R. N. (2008). Geochemistry of Groundwater, Burdwan District, West Bengal, India. Environmental Geology, 53, 1271-1282. https://doi.org/10.1007/s00254-007-0725-7
[20]
Jalali, M. (2009). Geochemistry Characterization of Groundwater in an Agricultural Area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479-1488. https://doi.org/10.1007/s00254-008-1245-9
[21]
Kraiem, Z., Zouari, K., Bencheikh, N., Agoun, A., & Abidi, B. (2015). Processus de minéralisation de la nappe du Plio-Quaternaire dans la plaine de Segui-Zograta (Sud-Ouest Tunisien). Hydrological Sciences Journal, 60, 534-548. https://doi.org/10.1080/02626667.2013.877587
[22]
Kuldip-Singh, Hundal, H. S., & Dhanwinder-Singh, (2011). Geochemistry and Assessment of Hydrogeochemical Processes in Groundwater in the Southern Part of Bathinda District of Punjab, Northwest India. Environmental Earth Sciences, 64, 1823-1833. https://doi.org/10.1007/s12665-011-0989-9
[23]
Laaouan, M., Aboulhassan, M.A., Bengamra, S., Taleb, A., Souabi, S., Tahiri, M. (2016). Comparative study of three groundwater pollution cities of Mohammedia, Temara and Dar Bouazza by nitrates (Moroccan Meseta). Journal of Materials and Environmental Science, 7, 1298-1309.
[24]
Mclean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater Quality and Sustaina-bility in an Alluvial Aquifer, Australia. In O. Sililo et al. (Eds.), Groundwater, Past Achievement and Future Challenges (pp. 567-573). A. A. Balkema.
[25]
Meybeck, M. (1987). Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287, 401-428. https://doi.org/10.2475/ajs.287.5.401
[26]
Mulliss, R., Revitt, D. M., & Shutes, R. B. E. (1997). The Impacts of Discharges from Two Combined Sewer Overflows on the Water Quality of an Urban Watercourse. Water Science and Technology, 36, 195-199. https://doi.org/10.2166/wst.1997.0665
[27]
Nanfack, N. A. C., Fonteh, F. A., Payne, V. K., Katte, B., & Fogoh, J. M. (2014). Eaux non conventionnelles: Un risque ou une solution aux problèmes d’eau pour les classes pauvres. Larhyss Journal, 17, 47-64.
[28]
Ngatcha, B. N., Mudry, J., Aranyossy, J. F., Naah, E., & Reynault, J. S. (2007). Apport de la géologie, de l’hydrogéologie et des isotopes de l’environnement à la connaissance des «nappes en creux» du Grand Yaéré (Nord Cameroun). Revue des sciences de l’eau, 20, 29-43. https://doi.org/10.7202/014905ar
[29]
Ngounou, N. B. (1993). Hydrogéologie des aquifères complexes en zone semi-aride-Les aquifères quaternaires des Grandes Yaérés (Nord Cameroun) (357 p). Thèse du Doctorat. Université Joseph Fourir-Grenoble I.
[30]
Nouayti, N., Khattach, D., & Hilali, M. (2015). Evaluation de la qualité physicchimique des eaux souterraines des nappes du Jurassiques du haut bassin de Ziz (haut Atlas central, Maroc). Journal of Materials and Environmental Science, 6, 1068-1081.
[31]
Nouzha, B., Kacem, S. A., Ferdaouss, L., Abrerrahim, L., & Mohammed, B. (2016). Evaluation De L’impact De La Pollution Agricole Sur La Qualite Des Eaux Souterraines De La Nappe Du Gharb. European Scientific Journal, 12, 509. https://doi.org/10.19044/esj.2016.v12n11p509
[32]
Oumar, F., Ahoussi, K. E., & Koffi, A. S. (2017). Cartographie Et Identification Des Activites Sources De Nuisances Et De Pollutions Dans Le Bassin Versant Du Barrage Du Kan De Bouake (Côte d’Ivoire). European Scientific Journal, 13, 303. https://doi.org/10.19044/esj.2017.v13n5p303
[33]
Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey, Water Resources Investigations Report 99-4259, 326 p.
[34]
Piper, A. M. (1953). A Graphic Procedure in the Geochemical Interpretation of Water Analyses (p. 14). Ground Water Notes No. 12, USGS.
[35]
Rodier, J. (2009). L’analyse de l’eau (9ème éd., 1526 p). Dunod.
[36]
Sall, M., & Vanclooster, M. (2009). Assessing the Well Water Pollution Problem by Nitrates in the Small Scale Farming Systems of the Niayes Region, Senegal. Agricultural Water Management, 96, 1360-1368. https://doi.org/10.1016/j.agwat.2009.04.010
[37]
Schneider, J. L., & Wolff, J. P. (1992). Carte Géologique et Carte Hydrogéologique 1/1500000 de la république du Tchad Mémoire Explicatif Vol. 1. BRGM. N°209.
[38]
Seeber, K. (2013). 2nd Discharge Measurements at Chari, Logone and Koulambou River, Chad Report N°6. BGR-CBLT.
[39]
Seignobos, C., & Moukouri, H. K. (2000). Potentialités des sols et terroirs agricoles: Atlas de la Province de l’Extrême-Nord Cameroun (p. 3). Atlas de la Province de l’Extrême-Nord is the publisher support.
[40]
Sighomnou, D. (2003). Gestion intégrée des eaux de crues—Cas de la plaine d’inondation du fleuve Logone. WMO-GWP, 18 p.
[41]
Simler, R. (2007). Diagramme ‘‘Logiciel Libre du Laboratoire d’Hydrogéologie’’. Univ. Avignon (France).
[42]
Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. The Influence of Geology and Weathering Environment on the Dissolved Load. Journal of Geophysical Research: Oceans, 88, 9671-9688. https://doi.org/10.1029/jc088ic14p09671
[43]
Touhari, F. (2015). Etude de la Qualité des Eaux de la vallée du Haut Cheliff. Thèse de Doctorat, Ecole Nationale Supérieure d’Hydraulique, 179 p.
[44]
Traoré, A., Mulaudzi, K., Chari, G., Foord, S., Mudau, L., Barnard, T. et al. (2016). The Impact of Human Activities on Microbial Quality of Rivers in the Vhembe District, South Africa. International Journal of Environmental Research and Public Health, 13, Article 817. https://doi.org/10.3390/ijerph13080817
WHO (2011). Guidelines to Drinking-Water Quality (4th ed., p. 564). NLM Classification: WA 675. OMS.
[47]
Wirmvem, M. J., Fantong, W. Y., Wotany, E. R., Takeshi, O., & Ayonghe, S. N. (2013). Sources of Bacteriological Contamination of Shallow Groundwater and Health Effects in Ndop Plain, Northwest Cameroon. Journal of Environmental Science and Water Resources, 2, 127-132.
[48]
Yidana, S. M., Ophori, D., & Banoeng-Yakubo, B. (2008). A Multivariate Statistical Analysis of Surface Water Chemistry Data—The Ankobra Basin, Ghana. Journal of Environmental Management, 86, 80-87. https://doi.org/10.1016/j.jenvman.2006.11.023